from abc import ABC
from collections.abc import Iterable
from copy import deepcopy
from math import sqrt, floor
from numbers import Real
import types
import lxml.etree as ET
import numpy as np
import openmc
import openmc.checkvalue as cv
from ._xml import get_text
from .mixin import IDManagerMixin
[docs]class Lattice(IDManagerMixin, ABC):
"""A repeating structure wherein each element is a universe.
Parameters
----------
lattice_id : int, optional
Unique identifier for the lattice. If not specified, an identifier will
automatically be assigned.
name : str, optional
Name of the lattice. If not specified, the name is the empty string.
Attributes
----------
id : int
Unique identifier for the lattice
name : str
Name of the lattice
pitch : Iterable of float
Pitch of the lattice in each direction in cm
outer : openmc.UniverseBase
A universe to fill all space outside the lattice
universes : Iterable of Iterable of openmc.UniverseBase
A two-or three-dimensional list/array of universes filling each element
of the lattice
"""
next_id = 1
used_ids = openmc.UniverseBase.used_ids
def __init__(self, lattice_id=None, name=''):
# Initialize Lattice class attributes
self.id = lattice_id
self.name = name
self._pitch = None
self._outer = None
self._universes = None
@property
def name(self):
return self._name
@name.setter
def name(self, name):
if name is not None:
cv.check_type('lattice name', name, str)
self._name = name
else:
self._name = ''
@property
def pitch(self):
return self._pitch
@property
def outer(self):
return self._outer
@outer.setter
def outer(self, outer):
cv.check_type('outer universe', outer, openmc.UniverseBase)
self._outer = outer
@property
def universes(self):
return self._universes
[docs] @staticmethod
def from_hdf5(group, universes):
"""Create lattice from HDF5 group
Parameters
----------
group : h5py.Group
Group in HDF5 file
universes : dict
Dictionary mapping universe IDs to instances of
:class:`openmc.UniverseBase`.
Returns
-------
openmc.Lattice
Instance of lattice subclass
"""
lattice_type = group['type'][()].decode()
if lattice_type == 'rectangular':
return openmc.RectLattice.from_hdf5(group, universes)
elif lattice_type == 'hexagonal':
return openmc.HexLattice.from_hdf5(group, universes)
else:
raise ValueError(f'Unknown lattice type: {lattice_type}')
[docs] def get_unique_universes(self):
"""Determine all unique universes in the lattice
Returns
-------
universes : dict
Dictionary whose keys are universe IDs and values are
:class:`openmc.UniverseBase` instances
"""
univs = {}
for k in range(len(self._universes)):
for j in range(len(self._universes[k])):
if isinstance(self._universes[k][j], openmc.UniverseBase):
u = self._universes[k][j]
univs[u._id] = u
else:
for i in range(len(self._universes[k][j])):
u = self._universes[k][j][i]
assert isinstance(u, openmc.UniverseBase)
univs[u._id] = u
if self.outer is not None:
univs[self.outer._id] = self.outer
return univs
[docs] def get_nuclides(self):
"""Returns all nuclides in the lattice
Returns
-------
nuclides : list of str
List of nuclide names
"""
nuclides = []
# Get all unique Universes contained in each of the lattice cells
unique_universes = self.get_unique_universes()
# Append all Universes containing each cell to the dictionary
for universe in unique_universes.values():
for nuclide in universe.get_nuclides():
if nuclide not in nuclides:
nuclides.append(nuclide)
return nuclides
[docs] def get_all_cells(self, memo=None):
"""Return all cells that are contained within the lattice
Returns
-------
cells : dict
Dictionary whose keys are cell IDs and values are :class:`Cell`
instances
"""
cells = {}
if memo is None:
memo = set()
elif self in memo:
return cells
memo.add(self)
unique_universes = self.get_unique_universes()
for universe in unique_universes.values():
cells.update(universe.get_all_cells(memo))
return cells
[docs] def get_all_materials(self, memo=None):
"""Return all materials that are contained within the lattice
Returns
-------
materials : dict
Dictionary whose keys are material IDs and values are
:class:`Material` instances
"""
if memo is None:
memo = set()
materials = {}
# Append all Cells in each Cell in the Universe to the dictionary
cells = self.get_all_cells(memo)
for cell in cells.values():
materials.update(cell.get_all_materials(memo))
return materials
[docs] def get_all_universes(self, memo=None):
"""Return all universes that are contained within the lattice
Returns
-------
universes : dict
Dictionary whose keys are universe IDs and values are
:class:`Universe` instances
"""
# Initialize a dictionary of all Universes contained by the Lattice
# in each nested Universe level
all_universes = {}
if memo is None:
memo = set()
elif self in memo:
return all_universes
memo.add(self)
# Get all unique Universes contained in each of the lattice cells
unique_universes = self.get_unique_universes()
# Add the unique Universes filling each Lattice cell
all_universes.update(unique_universes)
# Append all Universes containing each cell to the dictionary
for universe in unique_universes.values():
all_universes.update(universe.get_all_universes(memo))
return all_universes
[docs] def get_universe(self, idx):
r"""Return universe corresponding to a lattice element index
Parameters
----------
idx : Iterable of int
Lattice element indices. For a rectangular lattice, the indices are
given in the :math:`(x,y)` or :math:`(x,y,z)` coordinate system. For
hexagonal lattices, they are given in the :math:`x,\alpha` or
:math:`x,\alpha,z` coordinate systems for "y" orientations and
:math:`\alpha,y` or :math:`\alpha,y,z` coordinate systems for "x"
orientations.
Returns
-------
openmc.UniverseBase
Universe with given indices
"""
idx_u = self.get_universe_index(idx)
if self.ndim == 2:
return self.universes[idx_u[0]][idx_u[1]]
else:
return self.universes[idx_u[0]][idx_u[1]][idx_u[2]]
[docs] def find(self, point):
"""Find cells/universes/lattices which contain a given point
Parameters
----------
point : 3-tuple of float
Cartesian coordinates of the point
Returns
-------
list
Sequence of universes, cells, and lattices which are traversed to
find the given point
"""
idx, p = self.find_element(point)
if self.is_valid_index(idx):
u = self.get_universe(idx)
else:
if self.outer is not None:
u = self.outer
else:
return []
return [(self, idx)] + u.find(p)
[docs] def clone(self, clone_materials=True, clone_regions=True, memo=None):
"""Create a copy of this lattice with a new unique ID, and clones
all universes within this lattice.
Parameters
----------
clone_materials : bool
Whether to create separate copies of the materials filling cells
contained in this lattice and its outer universe.
clone_regions : bool
Whether to create separate copies of the regions bounding cells
contained in this lattice and its outer universe.
memo : dict or None
A nested dictionary of previously cloned objects. This parameter
is used internally and should not be specified by the user.
Returns
-------
clone : openmc.Lattice
The clone of this lattice
"""
if memo is None:
memo = {}
# If no memoize'd clone exists, instantiate one
if self not in memo:
clone = deepcopy(self)
clone.id = None
if self.outer is not None:
clone.outer = self.outer.clone(clone_materials, clone_regions,
memo)
# Assign universe clones to the lattice clone
for i in self.indices:
if isinstance(self, RectLattice):
clone.universes[i] = self.universes[i].clone(
clone_materials, clone_regions, memo)
else:
if self.ndim == 2:
clone.universes[i[0]][i[1]] = \
self.universes[i[0]][i[1]].clone(clone_materials,
clone_regions, memo)
else:
clone.universes[i[0]][i[1]][i[2]] = \
self.universes[i[0]][i[1]][i[2]].clone(
clone_materials, clone_regions, memo)
# Memoize the clone
memo[self] = clone
return memo[self]
[docs]class RectLattice(Lattice):
"""A lattice consisting of rectangular prisms.
To completely define a rectangular lattice, the
:attr:`RectLattice.lower_left` :attr:`RectLattice.pitch`,
:attr:`RectLattice.outer`, and :attr:`RectLattice.universes` properties need
to be set.
Most methods for this class use a natural indexing scheme wherein elements
are assigned an index corresponding to their position relative to the
(x,y,z) axes in a Cartesian coordinate system, i.e., an index of (0,0,0) in
the lattice gives the element whose x, y, and z coordinates are the
smallest. However, note that when universes are assigned to lattice elements
using the :attr:`RectLattice.universes` property, the array indices do not
correspond to natural indices.
Parameters
----------
lattice_id : int, optional
Unique identifier for the lattice. If not specified, an identifier will
automatically be assigned.
name : str, optional
Name of the lattice. If not specified, the name is the empty string.
Attributes
----------
id : int
Unique identifier for the lattice
name : str
Name of the lattice
pitch : Iterable of float
Pitch of the lattice in the x, y, and (if applicable) z directions in
cm.
outer : openmc.UniverseBase
A universe to fill all space outside the lattice
universes : Iterable of Iterable of openmc.UniverseBase
A two- or three-dimensional list/array of universes filling each element
of the lattice. The first dimension corresponds to the z-direction (if
applicable), the second dimension corresponds to the y-direction, and
the third dimension corresponds to the x-direction. Note that for the
y-direction, a higher index corresponds to a lower physical
y-value. Each z-slice in the array can be thought of as a top-down view
of the lattice.
lower_left : Iterable of float
The Cartesian coordinates of the lower-left corner of the lattice. If
the lattice is two-dimensional, only the x- and y-coordinates are
specified.
indices : list of tuple
A list of all possible (z,y,x) or (y,x) lattice element indices. These
indices correspond to indices in the :attr:`RectLattice.universes`
property.
ndim : int
The number of dimensions of the lattice
shape : Iterable of int
An array of two or three integers representing the number of lattice
cells in the x- and y- (and z-) directions, respectively.
"""
def __init__(self, lattice_id=None, name=''):
super().__init__(lattice_id, name)
# Initialize Lattice class attributes
self._lower_left = None
def __repr__(self):
string = 'RectLattice\n'
string += '{: <16}=\t{}\n'.format('\tID', self._id)
string += '{: <16}=\t{}\n'.format('\tName', self._name)
string += '{: <16}=\t{}\n'.format('\tShape', self.shape)
string += '{: <16}=\t{}\n'.format('\tLower Left', self._lower_left)
string += '{: <16}=\t{}\n'.format('\tPitch', self._pitch)
string += '{: <16}=\t{}\n'.format(
'\tOuter', self._outer._id if self._outer is not None else None)
string += '{: <16}\n'.format('\tUniverses')
# Lattice nested Universe IDs
for i, universe in enumerate(np.ravel(self._universes)):
string += f'{universe._id} '
# Add a newline character every time we reach end of row of cells
if (i + 1) % self.shape[0] == 0:
string += '\n'
string = string.rstrip('\n')
return string
@property
def indices(self):
if self.ndim == 2:
return list(np.broadcast(*np.ogrid[
:self.shape[1], :self.shape[0]]))
else:
return list(np.broadcast(*np.ogrid[
:self.shape[2], :self.shape[1], :self.shape[0]]))
@property
def _natural_indices(self):
"""Iterate over all possible (x,y) or (x,y,z) lattice element indices.
This property is used when constructing distributed cell and material
paths. Most importantly, the iteration order matches that used on the
Fortran side.
"""
if self.ndim == 2:
nx, ny = self.shape
for iy in range(ny):
for ix in range(nx):
yield (ix, iy)
else:
nx, ny, nz = self.shape
for iz in range(nz):
for iy in range(ny):
for ix in range(nx):
yield (ix, iy, iz)
@property
def lower_left(self):
return self._lower_left
@lower_left.setter
def lower_left(self, lower_left):
cv.check_type('lattice lower left corner', lower_left, Iterable, Real)
cv.check_length('lattice lower left corner', lower_left, 2, 3)
self._lower_left = lower_left
@property
def ndim(self):
if self.pitch is not None:
return len(self.pitch)
else:
raise ValueError('Number of dimensions cannot be determined until '
'the lattice pitch has been set.')
@property
def shape(self):
return self._universes.shape[::-1]
@Lattice.pitch.setter
def pitch(self, pitch):
cv.check_type('lattice pitch', pitch, Iterable, Real)
cv.check_length('lattice pitch', pitch, 2, 3)
for dim in pitch:
cv.check_greater_than('lattice pitch', dim, 0.0)
self._pitch = pitch
@Lattice.universes.setter
def universes(self, universes):
cv.check_iterable_type('lattice universes', universes, openmc.UniverseBase,
min_depth=2, max_depth=3)
self._universes = np.asarray(universes)
[docs] def find_element(self, point):
"""Determine index of lattice element and local coordinates for a point
Parameters
----------
point : Iterable of float
Cartesian coordinates of point
Returns
-------
2- or 3-tuple of int
A tuple of the corresponding (x,y,z) lattice element indices
3-tuple of float
Carestian coordinates of the point in the corresponding lattice
element coordinate system
"""
ix = floor((point[0] - self.lower_left[0])/self.pitch[0])
iy = floor((point[1] - self.lower_left[1])/self.pitch[1])
if self.ndim == 2:
idx = (ix, iy)
else:
iz = floor((point[2] - self.lower_left[2])/self.pitch[2])
idx = (ix, iy, iz)
return idx, self.get_local_coordinates(point, idx)
[docs] def get_local_coordinates(self, point, idx):
"""Determine local coordinates of a point within a lattice element
Parameters
----------
point : Iterable of float
Cartesian coordinates of point
idx : Iterable of int
(x,y,z) indices of lattice element. If the lattice is 2D, the z
index can be omitted.
Returns
-------
3-tuple of float
Cartesian coordinates of point in the lattice element coordinate
system
"""
x = point[0] - (self.lower_left[0] + (idx[0] + 0.5)*self.pitch[0])
y = point[1] - (self.lower_left[1] + (idx[1] + 0.5)*self.pitch[1])
if self.ndim == 2:
z = point[2]
else:
z = point[2] - (self.lower_left[2] + (idx[2] + 0.5)*self.pitch[2])
return (x, y, z)
[docs] def get_universe_index(self, idx):
"""Return index in the universes array corresponding
to a lattice element index
Parameters
----------
idx : Iterable of int
Lattice element indices in the :math:`(x,y,z)` coordinate system
Returns
-------
2- or 3-tuple of int
Indices used when setting the :attr:`RectLattice.universes` property
"""
max_y = self.shape[1] - 1
if self.ndim == 2:
x, y = idx
return (max_y - y, x)
else:
x, y, z = idx
return (z, max_y - y, x)
[docs] def is_valid_index(self, idx):
"""Determine whether lattice element index is within defined range
Parameters
----------
idx : Iterable of int
Lattice element indices in the :math:`(x,y,z)` coordinate system
Returns
-------
bool
Whether index is valid
"""
if self.ndim == 2:
return (0 <= idx[0] < self.shape[0] and
0 <= idx[1] < self.shape[1])
else:
return (0 <= idx[0] < self.shape[0] and
0 <= idx[1] < self.shape[1] and
0 <= idx[2] < self.shape[2])
[docs] def discretize(self, strategy="degenerate",
universes_to_ignore=[],
materials_to_clone=[],
lattice_neighbors=[], key=lambda univ: univ.id):
"""Discretize the lattice with either a degenerate or a local neighbor
symmetry strategy
'Degenerate' clones every universe in the lattice, thus making them all
uniquely defined. This is typically required if depletion or thermal
hydraulics will make every universe's environment unique.
'Local neighbor symmetry' groups universes with similar neighborhoods.
These clusters of cells and materials provide increased convergence
speed to multi-group cross sections tallies. The user can specify
the lattice's neighbors to discriminate between two sides of a
lattice for example.
Parameters
----------
strategy : {'degenerate', 'lns'}
Which strategy to adopt when discretizing the lattice
universes_to_ignore : Iterable of Universe
Lattice universes that need not be discretized
materials_to_clone : Iterable of Material
List of materials that should be cloned when discretizing
lattice_neighbors : Iterable of Universe
List of the lattice's neighbors. By default, if present, the
lattice outer universe will be used. The neighbors should be
ordered as follows [top left, top, top right, left, right,
bottom left, bottom, bottom right]
key : function
Function of argument a universe that is used to extract a
comparison key. This function will be called on each universe's
neighbors in the lattice to form a neighbor pattern. This pattern
is then used to identify unique neighbor symmetries.
"""
# Check routine inputs
if self.ndim != 2:
raise NotImplementedError("LNS discretization is not implemented "
"for 1D and 3D lattices")
cv.check_value('strategy', strategy, ('degenerate', 'lns'))
cv.check_type('universes_to_ignore', universes_to_ignore, Iterable,
openmc.UniverseBase)
cv.check_type('materials_to_clone', materials_to_clone, Iterable,
openmc.Material)
cv.check_type('lattice_neighbors', lattice_neighbors, Iterable,
openmc.UniverseBase)
cv.check_value('number of lattice_neighbors', len(lattice_neighbors),
(0, 8))
cv.check_type('key', key, types.FunctionType)
# Use outer universe if neighbors are missing and outer is defined
if self.outer is not None and len(lattice_neighbors) == 0:
lattice_neighbors = [key(self.outer) for i in range(8)]
elif len(lattice_neighbors) == 8:
lattice_neighbors = [key(universe) for universe in
lattice_neighbors]
# Dictionary that will keep track of where each pattern appears, how
# it was rotated and/or symmetrized
patterns = {}
# Initialize pattern array
pattern = np.empty(shape=(3, 3), dtype=type(key(self.universes[0][0])))
# Define an auxiliary function that returns a universe's neighbors
# that are outside the lattice
def find_edge_neighbors(pattern, i, j):
# If no neighbors have been specified, start with an empty array
if len(lattice_neighbors) == 0:
return
# Left edge
if i == 0:
pattern[:, 0] = lattice_neighbors[3]
if j == 0:
pattern[0, 0] = lattice_neighbors[0]
elif j == self.shape[1] - 1:
pattern[2, 0] = lattice_neighbors[5]
# Bottom edge
if j == 0:
pattern[0, 1] = lattice_neighbors[1]
if i != 0:
pattern[0, 0] = lattice_neighbors[1]
if i != self.shape[0] - 1:
pattern[0, 2] = lattice_neighbors[1]
# Right edge
if i == self.shape[0] - 1:
pattern[:, 2] = lattice_neighbors[4]
if j == 0:
pattern[0, 2] = lattice_neighbors[2]
elif j == self.shape[1] - 1:
pattern[2, 2] = lattice_neighbors[7]
# Top edge
if j == self.shape[1] - 1:
pattern[2, 1] = lattice_neighbors[6]
if i != 0:
pattern[2, 0] = lattice_neighbors[6]
if i != self.shape[0] - 1:
pattern[2, 2] = lattice_neighbors[6]
# Define an auxiliary function that returns a universe's neighbors
# among the universes inside the lattice
def find_lattice_neighbors(pattern, i, j):
# Away from left edge
if i != 0:
if j > 0:
pattern[0, 0] = key(self.universes[j-1][i-1])
pattern[1, 0] = key(self.universes[j][i-1])
if j < self.shape[1] - 1:
pattern[2, 0] = key(self.universes[j+1][i-1])
# Away from bottom edge
if j != 0:
if i > 0:
pattern[0, 0] = key(self.universes[j-1][i-1])
pattern[0, 1] = key(self.universes[j-1][i])
if i < self.shape[0] - 1:
pattern[0, 2] = key(self.universes[j-1][i+1])
# Away from right edge
if i != self.shape[0] - 1:
if j > 0:
pattern[0, 2] = key(self.universes[j-1][i+1])
pattern[1, 2] = key(self.universes[j][i+1])
if j < self.shape[1] - 1:
pattern[2, 2] = key(self.universes[j+1][i+1])
# Away from top edge
if j != self.shape[1] - 1:
if i > 0:
pattern[2, 0] = key(self.universes[j+1][i-1])
pattern[2, 1] = key(self.universes[j+1][i])
if i < self.shape[0] - 1:
pattern[2, 2] = key(self.universes[j+1][i+1])
# Analyze lattice, find unique patterns in groups of universes
for j in range(self.shape[1]):
for i in range(self.shape[0]):
# Skip universes to ignore
if self.universes[j][i] in universes_to_ignore:
continue
# Create a neighborhood pattern based on the universe's
# neighbors in the grid, and lattice's neighbors at the edges
# Degenerate discretization has all universes be different
if strategy == "degenerate":
patterns[(i, j)] = {'locations': [(i, j)]}
continue
# Find neighbors among lattice's neighbors at the edges
find_edge_neighbors(pattern, i, j)
# Find neighbors among the lattice's universes
find_lattice_neighbors(pattern, i, j)
pattern[1, 1] = key(self.universes[j][i])
# Look for pattern in dictionary of patterns found
found = False
for known_pattern, pattern_data in patterns.items():
# Look at all rotations of pattern
for rot in range(4):
if not found and tuple(map(tuple, pattern)) ==\
known_pattern:
found = True
# Save location of the pattern in the lattice
pattern_data['locations'].append((i, j))
# Rotate pattern
pattern = np.rot90(pattern)
# Look at transpose of pattern and its rotations
pattern = np.transpose(pattern)
for rot in range(4):
if not found and tuple(map(tuple, pattern)) ==\
known_pattern:
found = True
# Save location of the pattern in the lattice
pattern_data['locations'].append((i, j))
# Rotate pattern
pattern = np.rot90(pattern)
# Transpose pattern back for the next search
pattern = np.transpose(pattern)
# Create new pattern and add to the patterns dictionary
if not found:
patterns[tuple(map(tuple, pattern))] =\
{'locations': [(i, j)]}
# Discretize lattice
for pattern, pattern_data in patterns.items():
first_pos = pattern_data['locations'][0]
# Create a clone of the universe, without cloning materials
new_universe = self.universes[first_pos[1]][first_pos[0]].clone(
clone_materials=False, clone_regions=False)
# Replace only the materials in materials_to_clone
for material in materials_to_clone:
material_cloned = False
for cell in new_universe.get_all_cells().values():
if cell.fill_type == 'material':
if cell.fill.id == material.id:
# Only a single clone of each material is necessary
if not material_cloned:
material_clone = material.clone()
material_cloned = True
cell.fill = material_clone
elif cell.fill_type == 'distribmat':
raise(ValueError, "Lattice discretization should not "
"be used with distributed materials")
elif len(cell.temperature) > 1 or len(cell.fill) > 1:
raise(ValueError, "Lattice discretization should not "
"be used with distributed cells")
# Rebuild lattice from list of locations with this pattern
for index, location in enumerate(pattern_data['locations']):
self.universes[location[1]][location[0]] = new_universe
[docs] def create_xml_subelement(self, xml_element, memo=None):
"""Add the lattice xml representation to an incoming xml element
Parameters
----------
xml_element : lxml.etree._Element
XML element to be added to
memo : set or None
A set of object id's representing geometry entities already
written to the xml_element. This parameter is used internally
and should not be specified by users.
Returns
-------
None
"""
# If the element already contains the Lattice subelement, then return
if memo is None:
memo = set()
elif self in memo:
return
memo.add(self)
# Make sure universes have been assigned
if self.universes is None:
raise ValueError(f"Lattice {self.id} does not have universes assigned.")
lattice_subelement = ET.Element("lattice")
lattice_subelement.set("id", str(self._id))
if len(self._name) > 0:
lattice_subelement.set("name", str(self._name))
# Export the Lattice cell pitch
pitch = ET.SubElement(lattice_subelement, "pitch")
pitch.text = ' '.join(map(str, self._pitch))
# Export the Lattice outer Universe (if specified)
if self._outer is not None:
outer = ET.SubElement(lattice_subelement, "outer")
outer.text = str(self._outer._id)
self._outer.create_xml_subelement(xml_element, memo)
# Export Lattice cell dimensions
dimension = ET.SubElement(lattice_subelement, "dimension")
dimension.text = ' '.join(map(str, self.shape))
# Make sure lower_left has been specified
if self.lower_left is None:
raise ValueError(f"Lattice {self.id} does not have lower_left specified.")
# Export Lattice lower left
lower_left = ET.SubElement(lattice_subelement, "lower_left")
lower_left.text = ' '.join(map(str, self._lower_left))
# Export the Lattice nested Universe IDs
universe_ids = '\n'
# 3D Lattices
if self.ndim == 3:
for z in range(self.shape[2]):
for y in range(self.shape[1]):
for x in range(self.shape[0]):
universe = self._universes[z][y][x]
# Append Universe ID to the Lattice XML subelement
universe_ids += f'{universe._id} '
# Create XML subelement for this Universe
universe.create_xml_subelement(xml_element, memo)
# Add newline character when we reach end of row of cells
universe_ids += '\n'
# Add newline character when we reach end of row of cells
universe_ids += '\n'
# 2D Lattices
else:
for y in range(self.shape[1]):
for x in range(self.shape[0]):
universe = self._universes[y][x]
# Append Universe ID to Lattice XML subelement
universe_ids += f'{universe._id} '
# Create XML subelement for this Universe
universe.create_xml_subelement(xml_element, memo)
# Add newline character when we reach end of row of cells
universe_ids += '\n'
# Remove trailing newline character from Universe IDs string
universe_ids = universe_ids.rstrip('\n')
universes = ET.SubElement(lattice_subelement, "universes")
universes.text = universe_ids
# Append the XML subelement for this Lattice to the XML element
xml_element.append(lattice_subelement)
[docs] @classmethod
def from_xml_element(cls, elem, get_universe):
"""Generate rectangular lattice from XML element
Parameters
----------
elem : lxml.etree._Element
`<lattice>` element
get_universe : function
Function returning universe (defined in
:meth:`openmc.Geometry.from_xml`)
Returns
-------
RectLattice
Rectangular lattice
"""
lat_id = int(get_text(elem, 'id'))
name = get_text(elem, 'name')
lat = cls(lat_id, name)
lat.lower_left = [float(i)
for i in get_text(elem, 'lower_left').split()]
lat.pitch = [float(i) for i in get_text(elem, 'pitch').split()]
outer = get_text(elem, 'outer')
if outer is not None:
lat.outer = get_universe(int(outer))
# Get array of universes
dimension = get_text(elem, 'dimension').split()
shape = np.array(dimension, dtype=int)[::-1]
uarray = np.array([get_universe(int(i)) for i in
get_text(elem, 'universes').split()])
uarray.shape = shape
lat.universes = uarray
return lat
[docs] @classmethod
def from_hdf5(cls, group, universes):
"""Create rectangular lattice from HDF5 group
Parameters
----------
group : h5py.Group
Group in HDF5 file
universes : dict
Dictionary mapping universe IDs to instances of
:class:`openmc.UniverseBase`.
Returns
-------
openmc.RectLattice
Rectangular lattice
"""
dimension = group['dimension'][...]
lower_left = group['lower_left'][...]
pitch = group['pitch'][...]
outer = group['outer'][()]
universe_ids = group['universes'][...]
# Create the Lattice
lattice_id = int(group.name.split('/')[-1].lstrip('lattice '))
name = group['name'][()].decode() if 'name' in group else ''
lattice = cls(lattice_id, name)
lattice.lower_left = lower_left
lattice.pitch = pitch
# If the Universe specified outer the Lattice is not void
if outer >= 0:
lattice.outer = universes[outer]
# Build array of Universe pointers for the Lattice
uarray = np.empty(universe_ids.shape, dtype=openmc.UniverseBase)
for z in range(universe_ids.shape[0]):
for y in range(universe_ids.shape[1]):
for x in range(universe_ids.shape[2]):
uarray[z, y, x] = universes[universe_ids[z, y, x]]
# Use 2D NumPy array to store lattice universes for 2D lattices
if len(dimension) == 2:
uarray = np.squeeze(uarray)
uarray = np.atleast_2d(uarray)
# Set the universes for the lattice
lattice.universes = uarray
return lattice
[docs]class HexLattice(Lattice):
r"""A lattice consisting of hexagonal prisms.
To completely define a hexagonal lattice, the :attr:`HexLattice.center`,
:attr:`HexLattice.pitch`, :attr:`HexLattice.universes`, and
:attr:`HexLattice.outer` properties need to be set.
Most methods for this class use a natural indexing scheme wherein elements
are assigned an index corresponding to their position relative to skewed
:math:`(x,\alpha,z)` or :math:`(\alpha,y,z)` bases, depending on the lattice
orientation, as described fully in :ref:`hexagonal_indexing`. However, note
that when universes are assigned to lattice elements using the
:attr:`HexLattice.universes` property, the array indices do not correspond
to natural indices.
.. versionchanged:: 0.11
The orientation of the lattice can now be changed with the
:attr:`orientation` attribute.
Parameters
----------
lattice_id : int, optional
Unique identifier for the lattice. If not specified, an identifier will
automatically be assigned.
name : str, optional
Name of the lattice. If not specified, the name is the empty string.
Attributes
----------
id : int
Unique identifier for the lattice
name : str
Name of the lattice
pitch : Iterable of float
Pitch of the lattice in cm. The first item in the iterable specifies the
pitch in the radial direction and, if the lattice is 3D, the second item
in the iterable specifies the pitch in the axial direction.
outer : openmc.UniverseBase
A universe to fill all space outside the lattice
universes : Nested Iterable of openmc.UniverseBase
A two- or three-dimensional list/array of universes filling each element
of the lattice. Each sub-list corresponds to one ring of universes and
should be ordered from outermost ring to innermost ring. The universes
within each sub-list are ordered from the "top" and proceed in a
clockwise fashion. The :meth:`HexLattice.show_indices` method can be
used to help figure out indices for this property.
center : Iterable of float
Coordinates of the center of the lattice. If the lattice does not have
axial sections then only the x- and y-coordinates are specified
indices : list of tuple
A list of all possible (z,r,i) or (r,i) lattice element indices that are
possible, where z is the axial index, r is in the ring index (starting
from the outermost ring), and i is the index with a ring starting from
the top and proceeding clockwise.
orientation : {'x', 'y'}
str by default 'y' orientation of main lattice diagonal another option
- 'x'
num_rings : int
Number of radial ring positions in the xy-plane
num_axial : int
Number of positions along the z-axis.
"""
def __init__(self, lattice_id=None, name=''):
super().__init__(lattice_id, name)
# Initialize Lattice class attributes
self._num_rings = None
self._num_axial = None
self._center = None
self._orientation = 'y'
def __repr__(self):
string = 'HexLattice\n'
string += '{0: <16}{1}{2}\n'.format('\tID', '=\t', self._id)
string += '{0: <16}{1}{2}\n'.format('\tName', '=\t', self._name)
string += '{0: <16}{1}{2}\n'.format('\tOrientation', '=\t',
self._orientation)
string += '{0: <16}{1}{2}\n'.format('\t# Rings', '=\t', self._num_rings)
string += '{0: <16}{1}{2}\n'.format('\t# Axial', '=\t', self._num_axial)
string += '{0: <16}{1}{2}\n'.format('\tCenter', '=\t',
self._center)
string += '{0: <16}{1}{2}\n'.format('\tPitch', '=\t', self._pitch)
if self._outer is not None:
string += '{0: <16}{1}{2}\n'.format('\tOuter', '=\t',
self._outer._id)
else:
string += '{0: <16}{1}{2}\n'.format('\tOuter', '=\t',
self._outer)
string += '{0: <16}\n'.format('\tUniverses')
if self._num_axial is not None:
slices = [self._repr_axial_slice(x) for x in self._universes]
string += '\n'.join(slices)
else:
string += self._repr_axial_slice(self._universes)
return string
@property
def num_rings(self):
return self._num_rings
@property
def orientation(self):
return self._orientation
@orientation.setter
def orientation(self, orientation):
cv.check_value('orientation', orientation.lower(), ('x', 'y'))
self._orientation = orientation.lower()
@property
def num_axial(self):
return self._num_axial
@property
def center(self):
return self._center
@center.setter
def center(self, center):
cv.check_type('lattice center', center, Iterable, Real)
cv.check_length('lattice center', center, 2, 3)
self._center = center
@property
def indices(self):
if self.num_axial is None:
return [(r, i) for r in range(self.num_rings)
for i in range(max(6*(self.num_rings - 1 - r), 1))]
else:
return [(z, r, i) for z in range(self.num_axial)
for r in range(self.num_rings)
for i in range(max(6*(self.num_rings - 1 - r), 1))]
@property
def _natural_indices(self):
"""Iterate over all possible (x,alpha) or (x,alpha,z) lattice element
indices.
This property is used when constructing distributed cell and material
paths. Most importantly, the iteration order matches that used on the
Fortran side.
"""
r = self.num_rings
if self.num_axial is None:
for a in range(-r + 1, r):
for x in range(-r + 1, r):
idx = (x, a)
if self.is_valid_index(idx):
yield idx
else:
for z in range(self.num_axial):
for a in range(-r + 1, r):
for x in range(-r + 1, r):
idx = (x, a, z)
if self.is_valid_index(idx):
yield idx
@property
def ndim(self):
return 2 if isinstance(self.universes[0][0], openmc.UniverseBase) else 3
@Lattice.pitch.setter
def pitch(self, pitch):
cv.check_type('lattice pitch', pitch, Iterable, Real)
cv.check_length('lattice pitch', pitch, 1, 2)
for dim in pitch:
cv.check_greater_than('lattice pitch', dim, 0)
self._pitch = pitch
@Lattice.universes.setter
def universes(self, universes):
cv.check_iterable_type('lattice universes', universes, openmc.UniverseBase,
min_depth=2, max_depth=3)
self._universes = universes
# NOTE: This routine assumes that the user creates a "ragged" list of
# lists, where each sub-list corresponds to one ring of Universes.
# The sub-lists are ordered from outermost ring to innermost ring.
# The Universes within each sub-list are ordered from the "top" in a
# clockwise fashion.
# Set the number of axial positions.
if self.ndim == 3:
self._num_axial = len(self._universes)
else:
self._num_axial = None
# Set the number of rings and make sure this number is consistent for
# all axial positions.
if self.ndim == 3:
self._num_rings = len(self._universes[0])
for rings in self._universes:
if len(rings) != self._num_rings:
msg = 'HexLattice ID={0:d} has an inconsistent number of ' \
'rings per axial position'.format(self._id)
raise ValueError(msg)
else:
self._num_rings = len(self._universes)
# Make sure there are the correct number of elements in each ring.
if self.ndim == 3:
for axial_slice in self._universes:
# Check the center ring.
if len(axial_slice[-1]) != 1:
msg = 'HexLattice ID={0:d} has the wrong number of ' \
'elements in the innermost ring. Only 1 element is ' \
'allowed in the innermost ring.'.format(self._id)
raise ValueError(msg)
# Check the outer rings.
for r in range(self._num_rings-1):
if len(axial_slice[r]) != 6*(self._num_rings - 1 - r):
msg = 'HexLattice ID={0:d} has the wrong number of ' \
'elements in ring number {1:d} (counting from the '\
'outermost ring). This ring should have {2:d} ' \
'elements.'.format(self._id, r,
6*(self._num_rings - 1 - r))
raise ValueError(msg)
else:
axial_slice = self._universes
# Check the center ring.
if len(axial_slice[-1]) != 1:
msg = 'HexLattice ID={0:d} has the wrong number of ' \
'elements in the innermost ring. Only 1 element is ' \
'allowed in the innermost ring.'.format(self._id)
raise ValueError(msg)
# Check the outer rings.
for r in range(self._num_rings-1):
if len(axial_slice[r]) != 6*(self._num_rings - 1 - r):
msg = 'HexLattice ID={0:d} has the wrong number of ' \
'elements in ring number {1:d} (counting from the '\
'outermost ring). This ring should have {2:d} ' \
'elements.'.format(self._id, r,
6*(self._num_rings - 1 - r))
raise ValueError(msg)
[docs] def find_element(self, point):
r"""Determine index of lattice element and local coordinates for a point
Parameters
----------
point : Iterable of float
Cartesian coordinates of point
Returns
-------
3-tuple of int
Indices of corresponding lattice element in :math:`(x,\alpha,z)`
or :math:`(\alpha,y,z)` bases
numpy.ndarray
Carestian coordinates of the point in the corresponding lattice
element coordinate system
"""
# Convert coordinates to skewed bases
x = point[0] - self.center[0]
y = point[1] - self.center[1]
if self._num_axial is None:
iz = 1
else:
z = point[2] - self.center[2]
iz = floor(z/self.pitch[1] + 0.5*self.num_axial)
if self._orientation == 'x':
alpha = y - x*sqrt(3.)
i1 = floor(-alpha/(sqrt(3.0) * self.pitch[0]))
i2 = floor(y/(sqrt(0.75) * self.pitch[0]))
else:
alpha = y - x/sqrt(3.)
i1 = floor(x/(sqrt(0.75) * self.pitch[0]))
i2 = floor(alpha/self.pitch[0])
# Check four lattice elements to see which one is closest based on local
# coordinates
indices = [(i1, i2, iz), (i1 + 1, i2, iz), (i1, i2 + 1, iz),
(i1 + 1, i2 + 1, iz)]
d_min = np.inf
for idx in indices:
p = self.get_local_coordinates(point, idx)
d = p[0]**2 + p[1]**2
if d < d_min:
d_min = d
idx_min = idx
p_min = p
return idx_min, p_min
[docs] def get_local_coordinates(self, point, idx):
r"""Determine local coordinates of a point within a lattice element
Parameters
----------
point : Iterable of float
Cartesian coordinates of point
idx : Iterable of int
Indices of lattice element in :math:`(x,\alpha,z)`
or :math:`(\alpha,y,z)` bases
Returns
-------
3-tuple of float
Cartesian coordinates of point in the lattice element coordinate
system
"""
if self._orientation == 'x':
x = point[0] - (self.center[0] + (idx[0] + 0.5*idx[1])*self.pitch[0])
y = point[1] - (self.center[1] + sqrt(0.75)*self.pitch[0]*idx[1])
else:
x = point[0] - (self.center[0] + sqrt(0.75)*self.pitch[0]*idx[0])
y = point[1] - (self.center[1] + (0.5*idx[0] + idx[1])*self.pitch[0])
if self._num_axial is None:
z = point[2]
else:
z = point[2] - (self.center[2] + (idx[2] + 0.5 - 0.5*self.num_axial) *
self.pitch[1])
return (x, y, z)
[docs] def get_universe_index(self, idx):
r"""Return index in the universes array corresponding
to a lattice element index
Parameters
----------
idx : Iterable of int
Lattice element indices in the :math:`(x,\alpha,z)` coordinate
system in 'y' orientation case, or indices in the
:math:`(\alpha,y,z)` coordinate system in 'x' one
Returns
-------
2- or 3-tuple of int
Indices used when setting the :attr:`HexLattice.universes`
property
"""
# First we determine which ring the index corresponds to.
x = idx[0]
a = idx[1]
z = -a - x
g = max(abs(x), abs(a), abs(z))
# Next we use a clever method to figure out where along the ring we are.
i_ring = self._num_rings - 1 - g
if x >= 0:
if a >= 0:
i_within = x
else:
i_within = 2*g + z
else:
if a <= 0:
i_within = 3*g - x
else:
i_within = 5*g - z
if self._orientation == 'x' and g > 0:
i_within = (i_within + 5*g) % (6*g)
if self.num_axial is None:
return (i_ring, i_within)
else:
return (idx[2], i_ring, i_within)
[docs] def is_valid_index(self, idx):
r"""Determine whether lattice element index is within defined range
Parameters
----------
idx : Iterable of int
Lattice element indices in the both :math:`(x,\alpha,z)`
and :math:`(\alpha,y,z)` coordinate system
Returns
-------
bool
Whether index is valid
"""
x = idx[0]
y = idx[1]
z = 0 - y - x
g = max(abs(x), abs(y), abs(z))
if self.num_axial is None:
return g < self.num_rings
else:
return g < self.num_rings and 0 <= idx[2] < self.num_axial
def create_xml_subelement(self, xml_element, memo=None):
# If this subelement has already been written, return
if memo is None:
memo = set()
elif self in memo:
return
memo.add(self)
lattice_subelement = ET.Element("hex_lattice")
lattice_subelement.set("id", str(self._id))
if len(self._name) > 0:
lattice_subelement.set("name", str(self._name))
# Export the Lattice cell pitch
pitch = ET.SubElement(lattice_subelement, "pitch")
pitch.text = ' '.join(map(str, self._pitch))
# Export the Lattice outer Universe (if specified)
if self._outer is not None:
outer = ET.SubElement(lattice_subelement, "outer")
outer.text = str(self._outer._id)
self._outer.create_xml_subelement(xml_element, memo)
lattice_subelement.set("n_rings", str(self._num_rings))
# If orientation is "x" export it to XML
if self._orientation == 'x':
lattice_subelement.set("orientation", "x")
if self._num_axial is not None:
lattice_subelement.set("n_axial", str(self._num_axial))
# Export Lattice cell center
center = ET.SubElement(lattice_subelement, "center")
center.text = ' '.join(map(str, self._center))
# Export the Lattice nested Universe IDs.
if self.universes is None:
raise ValueError(f"Lattice {self.id} does not have universes assigned.")
# 3D Lattices
if self._num_axial is not None:
slices = []
for z in range(self._num_axial):
# Initialize the center universe.
universe = self._universes[z][-1][0]
universe.create_xml_subelement(xml_element, memo)
# Initialize the remaining universes.
for r in range(self._num_rings-1):
for theta in range(6*(self._num_rings - 1 - r)):
universe = self._universes[z][r][theta]
universe.create_xml_subelement(xml_element, memo)
# Get a string representation of the universe IDs.
slices.append(self._repr_axial_slice(self._universes[z]))
# Collapse the list of axial slices into a single string.
universe_ids = '\n'.join(slices)
# 2D Lattices
else:
# Initialize the center universe.
universe = self._universes[-1][0]
universe.create_xml_subelement(xml_element, memo)
# Initialize the remaining universes.
for r in range(self._num_rings - 1):
for theta in range(6*(self._num_rings - 1 - r)):
universe = self._universes[r][theta]
universe.create_xml_subelement(xml_element, memo)
# Get a string representation of the universe IDs.
universe_ids = self._repr_axial_slice(self._universes)
universes = ET.SubElement(lattice_subelement, "universes")
universes.text = '\n' + universe_ids
# Append the XML subelement for this Lattice to the XML element
xml_element.append(lattice_subelement)
[docs] @classmethod
def from_xml_element(cls, elem, get_universe):
"""Generate hexagonal lattice from XML element
Parameters
----------
elem : lxml.etree._Element
`<hex_lattice>` element
get_universe : function
Function returning universe (defined in
:meth:`openmc.Geometry.from_xml`)
Returns
-------
HexLattice
Hexagonal lattice
"""
lat_id = int(get_text(elem, 'id'))
name = get_text(elem, 'name')
lat = cls(lat_id, name)
lat.center = [float(i) for i in get_text(elem, 'center').split()]
lat.pitch = [float(i) for i in get_text(elem, 'pitch').split()]
lat.orientation = get_text(elem, 'orientation', 'y')
outer = get_text(elem, 'outer')
if outer is not None:
lat.outer = get_universe(int(outer))
# Get nested lists of universes
lat._num_rings = n_rings = int(get_text(elem, 'n_rings'))
lat._num_axial = n_axial = int(get_text(elem, 'n_axial', 1))
# Create empty nested lists for one axial level
univs = [[None for _ in range(max(6*(n_rings - 1 - r), 1))]
for r in range(n_rings)]
if n_axial > 1:
univs = [deepcopy(univs) for i in range(n_axial)]
# Get flat array of universes
uarray = np.array([get_universe(int(i)) for i in
get_text(elem, 'universes').split()])
# Fill nested lists
j = 0
for z in range(n_axial):
# Get list for a single axial level
axial_level = univs[z] if n_axial > 1 else univs
if lat.orientation == 'y':
# Start iterating from top
x, alpha = 0, n_rings - 1
while True:
# Set entry in list based on (x,alpha,z) coordinates
_, i_ring, i_within = lat.get_universe_index((x, alpha, z))
axial_level[i_ring][i_within] = uarray[j]
# Move to the right
x += 2
alpha -= 1
if not lat.is_valid_index((x, alpha, z)):
# Move down in y direction
alpha += x - 1
x = 1 - x
if not lat.is_valid_index((x, alpha, z)):
# Move to the right
x += 2
alpha -= 1
if not lat.is_valid_index((x, alpha, z)):
# Reached the bottom
j += 1
break
j += 1
else:
# Start iterating from top
alpha, y = 1 - n_rings, n_rings - 1
while True:
# Set entry in list based on (alpha,y,z) coordinates
_, i_ring, i_within = lat.get_universe_index((alpha, y, z))
axial_level[i_ring][i_within] = uarray[j]
# Move to the right
alpha += 1
if not lat.is_valid_index((alpha, y, z)):
# Move down to next row
alpha = 1 - n_rings
y -= 1
# Check if we've reached the bottom
if y == -n_rings:
j += 1
break
while not lat.is_valid_index((alpha, y, z)):
# Move to the right
alpha += 1
j += 1
lat.universes = univs
return lat
def _repr_axial_slice(self, universes):
"""Return string representation for the given 2D group of universes.
The 'universes' argument should be a list of lists of universes where
each sub-list represents a single ring. The first list should be the
outer ring.
"""
if self._orientation == 'x':
return self._repr_axial_slice_x(universes)
else:
return self._repr_axial_slice_y(universes)
def _repr_axial_slice_x(self, universes):
"""Return string representation for the given 2D group of universes
in 'x' orientation case.
The 'universes' argument should be a list of lists of universes where
each sub-list represents a single ring. The first list should be the
outer ring.
"""
# Find the largest universe ID and count the number of digits so we can
# properly pad the output string later.
largest_id = max([max([univ._id for univ in ring])
for ring in universes])
n_digits = len(str(largest_id))
pad = ' '*n_digits
id_form = '{: ^' + str(n_digits) + 'd}'
# Initialize the list for each row.
rows = [[] for i in range(2*self._num_rings - 1)]
middle = self._num_rings - 1
# Start with the degenerate first ring.
universe = universes[-1][0]
rows[middle] = [id_form.format(universe._id)]
# Add universes one ring at a time.
for r in range(1, self._num_rings):
# r_prime increments down while r increments up.
r_prime = self._num_rings - 1 - r
theta = 0
y = middle
# Climb down the bottom-right
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].append(id_form.format(universe._id))
# Translate the indices.
y += 1
theta += 1
# Climb left across the bottom
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].insert(0, id_form.format(universe._id))
# Translate the indices.
theta += 1
# Climb up the bottom-left
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].insert(0, id_form.format(universe._id))
# Translate the indices.
y -= 1
theta += 1
# Climb up the top-left
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].insert(0, id_form.format(universe._id))
# Translate the indices.
y -= 1
theta += 1
# Climb right across the top
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].append(id_form.format(universe._id))
# Translate the indices.
theta += 1
# Climb down the top-right
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].append(id_form.format(universe._id))
# Translate the indices.
y += 1
theta += 1
# Flip the rows and join each row into a single string.
rows = [pad.join(x) for x in rows]
# Pad the beginning of the rows so they line up properly.
for y in range(self._num_rings - 1):
rows[y] = (self._num_rings - 1 - y)*pad + rows[y]
rows[-1 - y] = (self._num_rings - 1 - y)*pad + rows[-1 - y]
# Join the rows together and return the string.
universe_ids = '\n'.join(rows)
return universe_ids
def _repr_axial_slice_y(self, universes):
"""Return string representation for the given 2D group of universes in
'y' orientation case..
The 'universes' argument should be a list of lists of universes where
each sub-list represents a single ring. The first list should be the
outer ring.
"""
# Find the largest universe ID and count the number of digits so we can
# properly pad the output string later.
largest_id = max([max([univ._id for univ in ring])
for ring in universes])
n_digits = len(str(largest_id))
pad = ' '*n_digits
id_form = '{: ^' + str(n_digits) + 'd}'
# Initialize the list for each row.
rows = [[] for i in range(1 + 4 * (self._num_rings-1))]
middle = 2 * (self._num_rings - 1)
# Start with the degenerate first ring.
universe = universes[-1][0]
rows[middle] = [id_form.format(universe._id)]
# Add universes one ring at a time.
for r in range(1, self._num_rings):
# r_prime increments down while r increments up.
r_prime = self._num_rings - 1 - r
theta = 0
y = middle + 2*r
# Climb down the top-right.
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].append(id_form.format(universe._id))
# Translate the indices.
y -= 1
theta += 1
# Climb down the right.
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].append(id_form.format(universe._id))
# Translate the indices.
y -= 2
theta += 1
# Climb down the bottom-right.
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].append(id_form.format(universe._id))
# Translate the indices.
y -= 1
theta += 1
# Climb up the bottom-left.
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].insert(0, id_form.format(universe._id))
# Translate the indices.
y += 1
theta += 1
# Climb up the left.
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].insert(0, id_form.format(universe._id))
# Translate the indices.
y += 2
theta += 1
# Climb up the top-left.
for i in range(r):
# Add the universe.
universe = universes[r_prime][theta]
rows[y].insert(0, id_form.format(universe._id))
# Translate the indices.
y += 1
theta += 1
# Flip the rows and join each row into a single string.
rows = [pad.join(x) for x in rows[::-1]]
# Pad the beginning of the rows so they line up properly.
for y in range(self._num_rings - 1):
rows[y] = (self._num_rings - 1 - y)*pad + rows[y]
rows[-1 - y] = (self._num_rings - 1 - y)*pad + rows[-1 - y]
for y in range(self._num_rings % 2, self._num_rings, 2):
rows[middle + y] = pad + rows[middle + y]
if y != 0:
rows[middle - y] = pad + rows[middle - y]
# Join the rows together and return the string.
universe_ids = '\n'.join(rows)
return universe_ids
@staticmethod
def _show_indices_y(num_rings):
"""Return a diagram of the hexagonal lattice layout with indices.
This method can be used to show the proper indices to be used when
setting the :attr:`HexLattice.universes` property. For example, running
this method with num_rings=3 will return the following diagram::
(0, 0)
(0,11) (0, 1)
(0,10) (1, 0) (0, 2)
(1, 5) (1, 1)
(0, 9) (2, 0) (0, 3)
(1, 4) (1, 2)
(0, 8) (1, 3) (0, 4)
(0, 7) (0, 5)
(0, 6)
Parameters
----------
num_rings : int
Number of rings in the hexagonal lattice
Returns
-------
str
Diagram of the hexagonal lattice showing indices
"""
# Find the largest string and count the number of digits so we can
# properly pad the output string later
largest_index = 6*(num_rings - 1)
n_digits_index = len(str(largest_index))
n_digits_ring = len(str(num_rings - 1))
str_form = f'({{:{n_digits_ring}}},{{:{n_digits_index}}})'
pad = ' '*(n_digits_index + n_digits_ring + 3)
# Initialize the list for each row.
rows = [[] for i in range(1 + 4 * (num_rings-1))]
middle = 2 * (num_rings - 1)
# Start with the degenerate first ring.
rows[middle] = [str_form.format(num_rings - 1, 0)]
# Add universes one ring at a time.
for r in range(1, num_rings):
# r_prime increments down while r increments up.
r_prime = num_rings - 1 - r
theta = 0
y = middle + 2*r
for i in range(r):
# Climb down the top-right.
rows[y].append(str_form.format(r_prime, theta))
y -= 1
theta += 1
for i in range(r):
# Climb down the right.
rows[y].append(str_form.format(r_prime, theta))
y -= 2
theta += 1
for i in range(r):
# Climb down the bottom-right.
rows[y].append(str_form.format(r_prime, theta))
y -= 1
theta += 1
for i in range(r):
# Climb up the bottom-left.
rows[y].insert(0, str_form.format(r_prime, theta))
y += 1
theta += 1
for i in range(r):
# Climb up the left.
rows[y].insert(0, str_form.format(r_prime, theta))
y += 2
theta += 1
for i in range(r):
# Climb up the top-left.
rows[y].insert(0, str_form.format(r_prime, theta))
y += 1
theta += 1
# Flip the rows and join each row into a single string.
rows = [pad.join(x) for x in rows[::-1]]
# Pad the beginning of the rows so they line up properly.
for y in range(num_rings - 1):
rows[y] = (num_rings - 1 - y)*pad + rows[y]
rows[-1 - y] = (num_rings - 1 - y)*pad + rows[-1 - y]
for y in range(num_rings % 2, num_rings, 2):
rows[middle + y] = pad + rows[middle + y]
if y != 0:
rows[middle - y] = pad + rows[middle - y]
# Join the rows together and return the string.
return '\n'.join(rows)
@staticmethod
def _show_indices_x(num_rings):
"""Return a diagram of the hexagonal lattice with x orientation
layout with indices.
This method can be used to show the proper indices to be used when
setting the :attr:`HexLattice.universes` property. For example,running
this method with num_rings=3 will return the similar diagram::
(0, 8) (0, 9) (0,10)
(0, 7) (1, 4) (1, 5) (0,11)
(0, 6) (1, 3) (2, 0) (1, 0) (0, 0)
(0, 5) (1, 2) (1, 1) (0, 1)
(0, 4) (0, 3) (0, 2)
Parameters
----------
num_rings : int
Number of rings in the hexagonal lattice
Returns
-------
str
Diagram of the hexagonal lattice showing indices in OX orientation
"""
# Find the largest string and count the number of digits so we can
# properly pad the output string later
largest_index = 6*(num_rings - 1)
n_digits_index = len(str(largest_index))
n_digits_ring = len(str(num_rings - 1))
str_form = f'({{:{n_digits_ring}}},{{:{n_digits_index}}})'
pad = ' '*(n_digits_index + n_digits_ring + 3)
# Initialize the list for each row.
rows = [[] for i in range(2*num_rings - 1)]
middle = num_rings - 1
# Start with the degenerate first ring.
rows[middle] = [str_form.format(num_rings - 1, 0)]
# Add universes one ring at a time.
for r in range(1, num_rings):
# r_prime increments down while r increments up.
r_prime = num_rings - 1 - r
theta = 0
y = middle
for i in range(r):
# Climb down the bottom-right
rows[y].append(str_form.format(r_prime, theta))
y += 1
theta += 1
for i in range(r):
# Climb left across the bottom
rows[y].insert(0, str_form.format(r_prime, theta))
theta += 1
for i in range(r):
# Climb up the bottom-left
rows[y].insert(0, str_form.format(r_prime, theta))
y -= 1
theta += 1
for i in range(r):
# Climb up the top-left
rows[y].insert(0, str_form.format(r_prime, theta))
y -= 1
theta += 1
for i in range(r):
# Climb right across the top
rows[y].append(str_form.format(r_prime, theta))
theta += 1
for i in range(r):
# Climb down the top-right
rows[y].append(str_form.format(r_prime, theta))
y += 1
theta += 1
# Flip the rows and join each row into a single string.
rows = [pad.join(x) for x in rows]
# Pad the beginning of the rows so they line up properly.
for y in range(num_rings - 1):
rows[y] = (num_rings - 1 - y)*pad + rows[y]
rows[-1 - y] = (num_rings - 1 - y)*pad + rows[-1 - y]
# Join the rows together and return the string.
return '\n\n'.join(rows)
[docs] @staticmethod
def show_indices(num_rings, orientation="y"):
"""Return a diagram of the hexagonal lattice layout with indices.
Parameters
----------
num_rings : int
Number of rings in the hexagonal lattice
orientation : {"x", "y"}
Orientation of the hexagonal lattice
Returns
-------
str
Diagram of the hexagonal lattice showing indices
"""
if orientation == 'x':
return HexLattice._show_indices_x(num_rings)
else:
return HexLattice._show_indices_y(num_rings)
[docs] @classmethod
def from_hdf5(cls, group, universes):
"""Create rectangular lattice from HDF5 group
Parameters
----------
group : h5py.Group
Group in HDF5 file
universes : dict
Dictionary mapping universe IDs to instances of
:class:`openmc.UniverseBase`.
Returns
-------
openmc.HexLattice
Hexagonal lattice
"""
n_rings = group['n_rings'][()]
n_axial = group['n_axial'][()]
center = group['center'][()]
pitch = group['pitch'][()]
outer = group['outer'][()]
if 'orientation' in group:
orientation = group['orientation'][()].decode()
else:
orientation = "y"
universe_ids = group['universes'][()]
# Create the Lattice
lattice_id = int(group.name.split('/')[-1].lstrip('lattice '))
name = group['name'][()].decode() if 'name' in group else ''
lattice = openmc.HexLattice(lattice_id, name)
lattice.center = center
lattice.pitch = pitch
lattice.orientation = orientation
# If the Universe specified outer the Lattice is not void
if outer >= 0:
lattice.outer = universes[outer]
if orientation == "y":
# Build array of Universe pointers for the Lattice. Note that
# we need to convert between the HDF5's square array of
# (x, alpha, z) to the Python API's format of a ragged nested
# list of (z, ring, theta).
uarray = []
for z in range(n_axial):
# Add a list for this axial level.
uarray.append([])
x = n_rings - 1
a = 2*n_rings - 2
for r in range(n_rings - 1, 0, -1):
# Add a list for this ring.
uarray[-1].append([])
# Climb down the top-right.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, a, x])
x += 1
a -= 1
# Climb down the right.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, a, x])
a -= 1
# Climb down the bottom-right.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, a, x])
x -= 1
# Climb up the bottom-left.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, a, x])
x -= 1
a += 1
# Climb up the left.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, a, x])
a += 1
# Climb up the top-left.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, a, x])
x += 1
# Move down to the next ring.
a -= 1
# Convert the ids into Universe objects.
uarray[-1][-1] = [universes[u_id]
for u_id in uarray[-1][-1]]
# Handle the degenerate center ring separately.
u_id = universe_ids[z, a, x]
uarray[-1].append([universes[u_id]])
else:
# Build array of Universe pointers for the Lattice. Note that
# we need to convert between the HDF5's square array of
# (alpha, y, z) to the Python API's format of a ragged nested
# list of (z, ring, theta).
uarray = []
for z in range(n_axial):
# Add a list for this axial level.
uarray.append([])
a = 2*n_rings - 2
y = n_rings - 1
for r in range(n_rings - 1, 0, -1):
# Add a list for this ring.
uarray[-1].append([])
# Climb down the bottom-right.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, y, a])
y -= 1
# Climb across the bottom.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, y, a])
a -= 1
# Climb up the bottom-left.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, y, a])
a -= 1
y += 1
# Climb up the top-left.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, y, a])
y += 1
# Climb across the top.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, y, a])
a += 1
# Climb down the top-right.
for i in range(r):
uarray[-1][-1].append(universe_ids[z, y, a])
a += 1
y -= 1
# Move down to the next ring.
a -= 1
# Convert the ids into Universe objects.
uarray[-1][-1] = [universes[u_id]
for u_id in uarray[-1][-1]]
# Handle the degenerate center ring separately.
u_id = universe_ids[z, y, a]
uarray[-1].append([universes[u_id]])
# Add the universes to the lattice.
if len(pitch) == 2:
# Lattice is 3D
lattice.universes = uarray
else:
# Lattice is 2D; extract the only axial level
lattice.universes = uarray[0]
return lattice