Source code for openmc.lattice

from abc import ABC
from collections.abc import Iterable
from copy import deepcopy
from math import sqrt, floor
from numbers import Real
import types

import lxml.etree as ET
import numpy as np

import openmc
import openmc.checkvalue as cv
from ._xml import get_text
from .mixin import IDManagerMixin


[docs]class Lattice(IDManagerMixin, ABC): """A repeating structure wherein each element is a universe. Parameters ---------- lattice_id : int, optional Unique identifier for the lattice. If not specified, an identifier will automatically be assigned. name : str, optional Name of the lattice. If not specified, the name is the empty string. Attributes ---------- id : int Unique identifier for the lattice name : str Name of the lattice pitch : Iterable of float Pitch of the lattice in each direction in cm outer : openmc.UniverseBase A universe to fill all space outside the lattice universes : Iterable of Iterable of openmc.UniverseBase A two-or three-dimensional list/array of universes filling each element of the lattice """ next_id = 1 used_ids = openmc.UniverseBase.used_ids def __init__(self, lattice_id=None, name=''): # Initialize Lattice class attributes self.id = lattice_id self.name = name self._pitch = None self._outer = None self._universes = None @property def name(self): return self._name @name.setter def name(self, name): if name is not None: cv.check_type('lattice name', name, str) self._name = name else: self._name = '' @property def pitch(self): return self._pitch @property def outer(self): return self._outer @outer.setter def outer(self, outer): cv.check_type('outer universe', outer, openmc.UniverseBase) self._outer = outer @property def universes(self): return self._universes
[docs] @staticmethod def from_hdf5(group, universes): """Create lattice from HDF5 group Parameters ---------- group : h5py.Group Group in HDF5 file universes : dict Dictionary mapping universe IDs to instances of :class:`openmc.UniverseBase`. Returns ------- openmc.Lattice Instance of lattice subclass """ lattice_type = group['type'][()].decode() if lattice_type == 'rectangular': return openmc.RectLattice.from_hdf5(group, universes) elif lattice_type == 'hexagonal': return openmc.HexLattice.from_hdf5(group, universes) else: raise ValueError(f'Unknown lattice type: {lattice_type}')
[docs] def get_unique_universes(self): """Determine all unique universes in the lattice Returns ------- universes : dict Dictionary whose keys are universe IDs and values are :class:`openmc.UniverseBase` instances """ univs = {} for k in range(len(self._universes)): for j in range(len(self._universes[k])): if isinstance(self._universes[k][j], openmc.UniverseBase): u = self._universes[k][j] univs[u._id] = u else: for i in range(len(self._universes[k][j])): u = self._universes[k][j][i] assert isinstance(u, openmc.UniverseBase) univs[u._id] = u if self.outer is not None: univs[self.outer._id] = self.outer return univs
[docs] def get_nuclides(self): """Returns all nuclides in the lattice Returns ------- nuclides : list of str List of nuclide names """ nuclides = [] # Get all unique Universes contained in each of the lattice cells unique_universes = self.get_unique_universes() # Append all Universes containing each cell to the dictionary for universe in unique_universes.values(): for nuclide in universe.get_nuclides(): if nuclide not in nuclides: nuclides.append(nuclide) return nuclides
[docs] def get_all_cells(self, memo=None): """Return all cells that are contained within the lattice Returns ------- cells : dict Dictionary whose keys are cell IDs and values are :class:`Cell` instances """ cells = {} if memo is None: memo = set() elif self in memo: return cells memo.add(self) unique_universes = self.get_unique_universes() for universe in unique_universes.values(): cells.update(universe.get_all_cells(memo)) return cells
[docs] def get_all_materials(self, memo=None): """Return all materials that are contained within the lattice Returns ------- materials : dict Dictionary whose keys are material IDs and values are :class:`Material` instances """ if memo is None: memo = set() materials = {} # Append all Cells in each Cell in the Universe to the dictionary cells = self.get_all_cells(memo) for cell in cells.values(): materials.update(cell.get_all_materials(memo)) return materials
[docs] def get_all_universes(self, memo=None): """Return all universes that are contained within the lattice Returns ------- universes : dict Dictionary whose keys are universe IDs and values are :class:`Universe` instances """ # Initialize a dictionary of all Universes contained by the Lattice # in each nested Universe level all_universes = {} if memo is None: memo = set() elif self in memo: return all_universes memo.add(self) # Get all unique Universes contained in each of the lattice cells unique_universes = self.get_unique_universes() # Add the unique Universes filling each Lattice cell all_universes.update(unique_universes) # Append all Universes containing each cell to the dictionary for universe in unique_universes.values(): all_universes.update(universe.get_all_universes(memo)) return all_universes
[docs] def get_universe(self, idx): r"""Return universe corresponding to a lattice element index Parameters ---------- idx : Iterable of int Lattice element indices. For a rectangular lattice, the indices are given in the :math:`(x,y)` or :math:`(x,y,z)` coordinate system. For hexagonal lattices, they are given in the :math:`x,\alpha` or :math:`x,\alpha,z` coordinate systems for "y" orientations and :math:`\alpha,y` or :math:`\alpha,y,z` coordinate systems for "x" orientations. Returns ------- openmc.UniverseBase Universe with given indices """ idx_u = self.get_universe_index(idx) if self.ndim == 2: return self.universes[idx_u[0]][idx_u[1]] else: return self.universes[idx_u[0]][idx_u[1]][idx_u[2]]
[docs] def find(self, point): """Find cells/universes/lattices which contain a given point Parameters ---------- point : 3-tuple of float Cartesian coordinates of the point Returns ------- list Sequence of universes, cells, and lattices which are traversed to find the given point """ idx, p = self.find_element(point) if self.is_valid_index(idx): u = self.get_universe(idx) else: if self.outer is not None: u = self.outer else: return [] return [(self, idx)] + u.find(p)
[docs] def clone(self, clone_materials=True, clone_regions=True, memo=None): """Create a copy of this lattice with a new unique ID, and clones all universes within this lattice. Parameters ---------- clone_materials : bool Whether to create separate copies of the materials filling cells contained in this lattice and its outer universe. clone_regions : bool Whether to create separate copies of the regions bounding cells contained in this lattice and its outer universe. memo : dict or None A nested dictionary of previously cloned objects. This parameter is used internally and should not be specified by the user. Returns ------- clone : openmc.Lattice The clone of this lattice """ if memo is None: memo = {} # If no memoize'd clone exists, instantiate one if self not in memo: clone = deepcopy(self) clone.id = None if self.outer is not None: clone.outer = self.outer.clone(clone_materials, clone_regions, memo) # Assign universe clones to the lattice clone for i in self.indices: if isinstance(self, RectLattice): clone.universes[i] = self.universes[i].clone( clone_materials, clone_regions, memo) else: if self.ndim == 2: clone.universes[i[0]][i[1]] = \ self.universes[i[0]][i[1]].clone(clone_materials, clone_regions, memo) else: clone.universes[i[0]][i[1]][i[2]] = \ self.universes[i[0]][i[1]][i[2]].clone( clone_materials, clone_regions, memo) # Memoize the clone memo[self] = clone return memo[self]
[docs]class RectLattice(Lattice): """A lattice consisting of rectangular prisms. To completely define a rectangular lattice, the :attr:`RectLattice.lower_left` :attr:`RectLattice.pitch`, :attr:`RectLattice.outer`, and :attr:`RectLattice.universes` properties need to be set. Most methods for this class use a natural indexing scheme wherein elements are assigned an index corresponding to their position relative to the (x,y,z) axes in a Cartesian coordinate system, i.e., an index of (0,0,0) in the lattice gives the element whose x, y, and z coordinates are the smallest. However, note that when universes are assigned to lattice elements using the :attr:`RectLattice.universes` property, the array indices do not correspond to natural indices. Parameters ---------- lattice_id : int, optional Unique identifier for the lattice. If not specified, an identifier will automatically be assigned. name : str, optional Name of the lattice. If not specified, the name is the empty string. Attributes ---------- id : int Unique identifier for the lattice name : str Name of the lattice pitch : Iterable of float Pitch of the lattice in the x, y, and (if applicable) z directions in cm. outer : openmc.UniverseBase A universe to fill all space outside the lattice universes : Iterable of Iterable of openmc.UniverseBase A two- or three-dimensional list/array of universes filling each element of the lattice. The first dimension corresponds to the z-direction (if applicable), the second dimension corresponds to the y-direction, and the third dimension corresponds to the x-direction. Note that for the y-direction, a higher index corresponds to a lower physical y-value. Each z-slice in the array can be thought of as a top-down view of the lattice. lower_left : Iterable of float The Cartesian coordinates of the lower-left corner of the lattice. If the lattice is two-dimensional, only the x- and y-coordinates are specified. indices : list of tuple A list of all possible (z,y,x) or (y,x) lattice element indices. These indices correspond to indices in the :attr:`RectLattice.universes` property. ndim : int The number of dimensions of the lattice shape : Iterable of int An array of two or three integers representing the number of lattice cells in the x- and y- (and z-) directions, respectively. """ def __init__(self, lattice_id=None, name=''): super().__init__(lattice_id, name) # Initialize Lattice class attributes self._lower_left = None def __repr__(self): string = 'RectLattice\n' string += '{: <16}=\t{}\n'.format('\tID', self._id) string += '{: <16}=\t{}\n'.format('\tName', self._name) string += '{: <16}=\t{}\n'.format('\tShape', self.shape) string += '{: <16}=\t{}\n'.format('\tLower Left', self._lower_left) string += '{: <16}=\t{}\n'.format('\tPitch', self._pitch) string += '{: <16}=\t{}\n'.format( '\tOuter', self._outer._id if self._outer is not None else None) string += '{: <16}\n'.format('\tUniverses') # Lattice nested Universe IDs for i, universe in enumerate(np.ravel(self._universes)): string += f'{universe._id} ' # Add a newline character every time we reach end of row of cells if (i + 1) % self.shape[0] == 0: string += '\n' string = string.rstrip('\n') return string @property def indices(self): if self.ndim == 2: return list(np.broadcast(*np.ogrid[ :self.shape[1], :self.shape[0]])) else: return list(np.broadcast(*np.ogrid[ :self.shape[2], :self.shape[1], :self.shape[0]])) @property def _natural_indices(self): """Iterate over all possible (x,y) or (x,y,z) lattice element indices. This property is used when constructing distributed cell and material paths. Most importantly, the iteration order matches that used on the Fortran side. """ if self.ndim == 2: nx, ny = self.shape for iy in range(ny): for ix in range(nx): yield (ix, iy) else: nx, ny, nz = self.shape for iz in range(nz): for iy in range(ny): for ix in range(nx): yield (ix, iy, iz) @property def lower_left(self): return self._lower_left @lower_left.setter def lower_left(self, lower_left): cv.check_type('lattice lower left corner', lower_left, Iterable, Real) cv.check_length('lattice lower left corner', lower_left, 2, 3) self._lower_left = lower_left @property def ndim(self): if self.pitch is not None: return len(self.pitch) else: raise ValueError('Number of dimensions cannot be determined until ' 'the lattice pitch has been set.') @property def shape(self): return self._universes.shape[::-1] @Lattice.pitch.setter def pitch(self, pitch): cv.check_type('lattice pitch', pitch, Iterable, Real) cv.check_length('lattice pitch', pitch, 2, 3) for dim in pitch: cv.check_greater_than('lattice pitch', dim, 0.0) self._pitch = pitch @Lattice.universes.setter def universes(self, universes): cv.check_iterable_type('lattice universes', universes, openmc.UniverseBase, min_depth=2, max_depth=3) self._universes = np.asarray(universes)
[docs] def find_element(self, point): """Determine index of lattice element and local coordinates for a point Parameters ---------- point : Iterable of float Cartesian coordinates of point Returns ------- 2- or 3-tuple of int A tuple of the corresponding (x,y,z) lattice element indices 3-tuple of float Carestian coordinates of the point in the corresponding lattice element coordinate system """ ix = floor((point[0] - self.lower_left[0])/self.pitch[0]) iy = floor((point[1] - self.lower_left[1])/self.pitch[1]) if self.ndim == 2: idx = (ix, iy) else: iz = floor((point[2] - self.lower_left[2])/self.pitch[2]) idx = (ix, iy, iz) return idx, self.get_local_coordinates(point, idx)
[docs] def get_local_coordinates(self, point, idx): """Determine local coordinates of a point within a lattice element Parameters ---------- point : Iterable of float Cartesian coordinates of point idx : Iterable of int (x,y,z) indices of lattice element. If the lattice is 2D, the z index can be omitted. Returns ------- 3-tuple of float Cartesian coordinates of point in the lattice element coordinate system """ x = point[0] - (self.lower_left[0] + (idx[0] + 0.5)*self.pitch[0]) y = point[1] - (self.lower_left[1] + (idx[1] + 0.5)*self.pitch[1]) if self.ndim == 2: z = point[2] else: z = point[2] - (self.lower_left[2] + (idx[2] + 0.5)*self.pitch[2]) return (x, y, z)
[docs] def get_universe_index(self, idx): """Return index in the universes array corresponding to a lattice element index Parameters ---------- idx : Iterable of int Lattice element indices in the :math:`(x,y,z)` coordinate system Returns ------- 2- or 3-tuple of int Indices used when setting the :attr:`RectLattice.universes` property """ max_y = self.shape[1] - 1 if self.ndim == 2: x, y = idx return (max_y - y, x) else: x, y, z = idx return (z, max_y - y, x)
[docs] def is_valid_index(self, idx): """Determine whether lattice element index is within defined range Parameters ---------- idx : Iterable of int Lattice element indices in the :math:`(x,y,z)` coordinate system Returns ------- bool Whether index is valid """ if self.ndim == 2: return (0 <= idx[0] < self.shape[0] and 0 <= idx[1] < self.shape[1]) else: return (0 <= idx[0] < self.shape[0] and 0 <= idx[1] < self.shape[1] and 0 <= idx[2] < self.shape[2])
[docs] def discretize(self, strategy="degenerate", universes_to_ignore=[], materials_to_clone=[], lattice_neighbors=[], key=lambda univ: univ.id): """Discretize the lattice with either a degenerate or a local neighbor symmetry strategy 'Degenerate' clones every universe in the lattice, thus making them all uniquely defined. This is typically required if depletion or thermal hydraulics will make every universe's environment unique. 'Local neighbor symmetry' groups universes with similar neighborhoods. These clusters of cells and materials provide increased convergence speed to multi-group cross sections tallies. The user can specify the lattice's neighbors to discriminate between two sides of a lattice for example. Parameters ---------- strategy : {'degenerate', 'lns'} Which strategy to adopt when discretizing the lattice universes_to_ignore : Iterable of Universe Lattice universes that need not be discretized materials_to_clone : Iterable of Material List of materials that should be cloned when discretizing lattice_neighbors : Iterable of Universe List of the lattice's neighbors. By default, if present, the lattice outer universe will be used. The neighbors should be ordered as follows [top left, top, top right, left, right, bottom left, bottom, bottom right] key : function Function of argument a universe that is used to extract a comparison key. This function will be called on each universe's neighbors in the lattice to form a neighbor pattern. This pattern is then used to identify unique neighbor symmetries. """ # Check routine inputs if self.ndim != 2: raise NotImplementedError("LNS discretization is not implemented " "for 1D and 3D lattices") cv.check_value('strategy', strategy, ('degenerate', 'lns')) cv.check_type('universes_to_ignore', universes_to_ignore, Iterable, openmc.UniverseBase) cv.check_type('materials_to_clone', materials_to_clone, Iterable, openmc.Material) cv.check_type('lattice_neighbors', lattice_neighbors, Iterable, openmc.UniverseBase) cv.check_value('number of lattice_neighbors', len(lattice_neighbors), (0, 8)) cv.check_type('key', key, types.FunctionType) # Use outer universe if neighbors are missing and outer is defined if self.outer is not None and len(lattice_neighbors) == 0: lattice_neighbors = [key(self.outer) for i in range(8)] elif len(lattice_neighbors) == 8: lattice_neighbors = [key(universe) for universe in lattice_neighbors] # Dictionary that will keep track of where each pattern appears, how # it was rotated and/or symmetrized patterns = {} # Initialize pattern array pattern = np.empty(shape=(3, 3), dtype=type(key(self.universes[0][0]))) # Define an auxiliary function that returns a universe's neighbors # that are outside the lattice def find_edge_neighbors(pattern, i, j): # If no neighbors have been specified, start with an empty array if len(lattice_neighbors) == 0: return # Left edge if i == 0: pattern[:, 0] = lattice_neighbors[3] if j == 0: pattern[0, 0] = lattice_neighbors[0] elif j == self.shape[1] - 1: pattern[2, 0] = lattice_neighbors[5] # Bottom edge if j == 0: pattern[0, 1] = lattice_neighbors[1] if i != 0: pattern[0, 0] = lattice_neighbors[1] if i != self.shape[0] - 1: pattern[0, 2] = lattice_neighbors[1] # Right edge if i == self.shape[0] - 1: pattern[:, 2] = lattice_neighbors[4] if j == 0: pattern[0, 2] = lattice_neighbors[2] elif j == self.shape[1] - 1: pattern[2, 2] = lattice_neighbors[7] # Top edge if j == self.shape[1] - 1: pattern[2, 1] = lattice_neighbors[6] if i != 0: pattern[2, 0] = lattice_neighbors[6] if i != self.shape[0] - 1: pattern[2, 2] = lattice_neighbors[6] # Define an auxiliary function that returns a universe's neighbors # among the universes inside the lattice def find_lattice_neighbors(pattern, i, j): # Away from left edge if i != 0: if j > 0: pattern[0, 0] = key(self.universes[j-1][i-1]) pattern[1, 0] = key(self.universes[j][i-1]) if j < self.shape[1] - 1: pattern[2, 0] = key(self.universes[j+1][i-1]) # Away from bottom edge if j != 0: if i > 0: pattern[0, 0] = key(self.universes[j-1][i-1]) pattern[0, 1] = key(self.universes[j-1][i]) if i < self.shape[0] - 1: pattern[0, 2] = key(self.universes[j-1][i+1]) # Away from right edge if i != self.shape[0] - 1: if j > 0: pattern[0, 2] = key(self.universes[j-1][i+1]) pattern[1, 2] = key(self.universes[j][i+1]) if j < self.shape[1] - 1: pattern[2, 2] = key(self.universes[j+1][i+1]) # Away from top edge if j != self.shape[1] - 1: if i > 0: pattern[2, 0] = key(self.universes[j+1][i-1]) pattern[2, 1] = key(self.universes[j+1][i]) if i < self.shape[0] - 1: pattern[2, 2] = key(self.universes[j+1][i+1]) # Analyze lattice, find unique patterns in groups of universes for j in range(self.shape[1]): for i in range(self.shape[0]): # Skip universes to ignore if self.universes[j][i] in universes_to_ignore: continue # Create a neighborhood pattern based on the universe's # neighbors in the grid, and lattice's neighbors at the edges # Degenerate discretization has all universes be different if strategy == "degenerate": patterns[(i, j)] = {'locations': [(i, j)]} continue # Find neighbors among lattice's neighbors at the edges find_edge_neighbors(pattern, i, j) # Find neighbors among the lattice's universes find_lattice_neighbors(pattern, i, j) pattern[1, 1] = key(self.universes[j][i]) # Look for pattern in dictionary of patterns found found = False for known_pattern, pattern_data in patterns.items(): # Look at all rotations of pattern for rot in range(4): if not found and tuple(map(tuple, pattern)) ==\ known_pattern: found = True # Save location of the pattern in the lattice pattern_data['locations'].append((i, j)) # Rotate pattern pattern = np.rot90(pattern) # Look at transpose of pattern and its rotations pattern = np.transpose(pattern) for rot in range(4): if not found and tuple(map(tuple, pattern)) ==\ known_pattern: found = True # Save location of the pattern in the lattice pattern_data['locations'].append((i, j)) # Rotate pattern pattern = np.rot90(pattern) # Transpose pattern back for the next search pattern = np.transpose(pattern) # Create new pattern and add to the patterns dictionary if not found: patterns[tuple(map(tuple, pattern))] =\ {'locations': [(i, j)]} # Discretize lattice for pattern, pattern_data in patterns.items(): first_pos = pattern_data['locations'][0] # Create a clone of the universe, without cloning materials new_universe = self.universes[first_pos[1]][first_pos[0]].clone( clone_materials=False, clone_regions=False) # Replace only the materials in materials_to_clone for material in materials_to_clone: material_cloned = False for cell in new_universe.get_all_cells().values(): if cell.fill_type == 'material': if cell.fill.id == material.id: # Only a single clone of each material is necessary if not material_cloned: material_clone = material.clone() material_cloned = True cell.fill = material_clone elif cell.fill_type == 'distribmat': raise(ValueError, "Lattice discretization should not " "be used with distributed materials") elif len(cell.temperature) > 1 or len(cell.fill) > 1: raise(ValueError, "Lattice discretization should not " "be used with distributed cells") # Rebuild lattice from list of locations with this pattern for index, location in enumerate(pattern_data['locations']): self.universes[location[1]][location[0]] = new_universe
[docs] def create_xml_subelement(self, xml_element, memo=None): """Add the lattice xml representation to an incoming xml element Parameters ---------- xml_element : lxml.etree._Element XML element to be added to memo : set or None A set of object id's representing geometry entities already written to the xml_element. This parameter is used internally and should not be specified by users. Returns ------- None """ # If the element already contains the Lattice subelement, then return if memo is None: memo = set() elif self in memo: return memo.add(self) # Make sure universes have been assigned if self.universes is None: raise ValueError(f"Lattice {self.id} does not have universes assigned.") lattice_subelement = ET.Element("lattice") lattice_subelement.set("id", str(self._id)) if len(self._name) > 0: lattice_subelement.set("name", str(self._name)) # Export the Lattice cell pitch pitch = ET.SubElement(lattice_subelement, "pitch") pitch.text = ' '.join(map(str, self._pitch)) # Export the Lattice outer Universe (if specified) if self._outer is not None: outer = ET.SubElement(lattice_subelement, "outer") outer.text = str(self._outer._id) self._outer.create_xml_subelement(xml_element, memo) # Export Lattice cell dimensions dimension = ET.SubElement(lattice_subelement, "dimension") dimension.text = ' '.join(map(str, self.shape)) # Make sure lower_left has been specified if self.lower_left is None: raise ValueError(f"Lattice {self.id} does not have lower_left specified.") # Export Lattice lower left lower_left = ET.SubElement(lattice_subelement, "lower_left") lower_left.text = ' '.join(map(str, self._lower_left)) # Export the Lattice nested Universe IDs universe_ids = '\n' # 3D Lattices if self.ndim == 3: for z in range(self.shape[2]): for y in range(self.shape[1]): for x in range(self.shape[0]): universe = self._universes[z][y][x] # Append Universe ID to the Lattice XML subelement universe_ids += f'{universe._id} ' # Create XML subelement for this Universe universe.create_xml_subelement(xml_element, memo) # Add newline character when we reach end of row of cells universe_ids += '\n' # Add newline character when we reach end of row of cells universe_ids += '\n' # 2D Lattices else: for y in range(self.shape[1]): for x in range(self.shape[0]): universe = self._universes[y][x] # Append Universe ID to Lattice XML subelement universe_ids += f'{universe._id} ' # Create XML subelement for this Universe universe.create_xml_subelement(xml_element, memo) # Add newline character when we reach end of row of cells universe_ids += '\n' # Remove trailing newline character from Universe IDs string universe_ids = universe_ids.rstrip('\n') universes = ET.SubElement(lattice_subelement, "universes") universes.text = universe_ids # Append the XML subelement for this Lattice to the XML element xml_element.append(lattice_subelement)
[docs] @classmethod def from_xml_element(cls, elem, get_universe): """Generate rectangular lattice from XML element Parameters ---------- elem : lxml.etree._Element `<lattice>` element get_universe : function Function returning universe (defined in :meth:`openmc.Geometry.from_xml`) Returns ------- RectLattice Rectangular lattice """ lat_id = int(get_text(elem, 'id')) name = get_text(elem, 'name') lat = cls(lat_id, name) lat.lower_left = [float(i) for i in get_text(elem, 'lower_left').split()] lat.pitch = [float(i) for i in get_text(elem, 'pitch').split()] outer = get_text(elem, 'outer') if outer is not None: lat.outer = get_universe(int(outer)) # Get array of universes dimension = get_text(elem, 'dimension').split() shape = np.array(dimension, dtype=int)[::-1] uarray = np.array([get_universe(int(i)) for i in get_text(elem, 'universes').split()]) uarray.shape = shape lat.universes = uarray return lat
[docs] @classmethod def from_hdf5(cls, group, universes): """Create rectangular lattice from HDF5 group Parameters ---------- group : h5py.Group Group in HDF5 file universes : dict Dictionary mapping universe IDs to instances of :class:`openmc.UniverseBase`. Returns ------- openmc.RectLattice Rectangular lattice """ dimension = group['dimension'][...] lower_left = group['lower_left'][...] pitch = group['pitch'][...] outer = group['outer'][()] universe_ids = group['universes'][...] # Create the Lattice lattice_id = int(group.name.split('/')[-1].lstrip('lattice ')) name = group['name'][()].decode() if 'name' in group else '' lattice = cls(lattice_id, name) lattice.lower_left = lower_left lattice.pitch = pitch # If the Universe specified outer the Lattice is not void if outer >= 0: lattice.outer = universes[outer] # Build array of Universe pointers for the Lattice uarray = np.empty(universe_ids.shape, dtype=openmc.UniverseBase) for z in range(universe_ids.shape[0]): for y in range(universe_ids.shape[1]): for x in range(universe_ids.shape[2]): uarray[z, y, x] = universes[universe_ids[z, y, x]] # Use 2D NumPy array to store lattice universes for 2D lattices if len(dimension) == 2: uarray = np.squeeze(uarray) uarray = np.atleast_2d(uarray) # Set the universes for the lattice lattice.universes = uarray return lattice
[docs]class HexLattice(Lattice): r"""A lattice consisting of hexagonal prisms. To completely define a hexagonal lattice, the :attr:`HexLattice.center`, :attr:`HexLattice.pitch`, :attr:`HexLattice.universes`, and :attr:`HexLattice.outer` properties need to be set. Most methods for this class use a natural indexing scheme wherein elements are assigned an index corresponding to their position relative to skewed :math:`(x,\alpha,z)` or :math:`(\alpha,y,z)` bases, depending on the lattice orientation, as described fully in :ref:`hexagonal_indexing`. However, note that when universes are assigned to lattice elements using the :attr:`HexLattice.universes` property, the array indices do not correspond to natural indices. .. versionchanged:: 0.11 The orientation of the lattice can now be changed with the :attr:`orientation` attribute. Parameters ---------- lattice_id : int, optional Unique identifier for the lattice. If not specified, an identifier will automatically be assigned. name : str, optional Name of the lattice. If not specified, the name is the empty string. Attributes ---------- id : int Unique identifier for the lattice name : str Name of the lattice pitch : Iterable of float Pitch of the lattice in cm. The first item in the iterable specifies the pitch in the radial direction and, if the lattice is 3D, the second item in the iterable specifies the pitch in the axial direction. outer : openmc.UniverseBase A universe to fill all space outside the lattice universes : Nested Iterable of openmc.UniverseBase A two- or three-dimensional list/array of universes filling each element of the lattice. Each sub-list corresponds to one ring of universes and should be ordered from outermost ring to innermost ring. The universes within each sub-list are ordered from the "top" and proceed in a clockwise fashion. The :meth:`HexLattice.show_indices` method can be used to help figure out indices for this property. center : Iterable of float Coordinates of the center of the lattice. If the lattice does not have axial sections then only the x- and y-coordinates are specified indices : list of tuple A list of all possible (z,r,i) or (r,i) lattice element indices that are possible, where z is the axial index, r is in the ring index (starting from the outermost ring), and i is the index with a ring starting from the top and proceeding clockwise. orientation : {'x', 'y'} str by default 'y' orientation of main lattice diagonal another option - 'x' num_rings : int Number of radial ring positions in the xy-plane num_axial : int Number of positions along the z-axis. """ def __init__(self, lattice_id=None, name=''): super().__init__(lattice_id, name) # Initialize Lattice class attributes self._num_rings = None self._num_axial = None self._center = None self._orientation = 'y' def __repr__(self): string = 'HexLattice\n' string += '{0: <16}{1}{2}\n'.format('\tID', '=\t', self._id) string += '{0: <16}{1}{2}\n'.format('\tName', '=\t', self._name) string += '{0: <16}{1}{2}\n'.format('\tOrientation', '=\t', self._orientation) string += '{0: <16}{1}{2}\n'.format('\t# Rings', '=\t', self._num_rings) string += '{0: <16}{1}{2}\n'.format('\t# Axial', '=\t', self._num_axial) string += '{0: <16}{1}{2}\n'.format('\tCenter', '=\t', self._center) string += '{0: <16}{1}{2}\n'.format('\tPitch', '=\t', self._pitch) if self._outer is not None: string += '{0: <16}{1}{2}\n'.format('\tOuter', '=\t', self._outer._id) else: string += '{0: <16}{1}{2}\n'.format('\tOuter', '=\t', self._outer) string += '{0: <16}\n'.format('\tUniverses') if self._num_axial is not None: slices = [self._repr_axial_slice(x) for x in self._universes] string += '\n'.join(slices) else: string += self._repr_axial_slice(self._universes) return string @property def num_rings(self): return self._num_rings @property def orientation(self): return self._orientation @orientation.setter def orientation(self, orientation): cv.check_value('orientation', orientation.lower(), ('x', 'y')) self._orientation = orientation.lower() @property def num_axial(self): return self._num_axial @property def center(self): return self._center @center.setter def center(self, center): cv.check_type('lattice center', center, Iterable, Real) cv.check_length('lattice center', center, 2, 3) self._center = center @property def indices(self): if self.num_axial is None: return [(r, i) for r in range(self.num_rings) for i in range(max(6*(self.num_rings - 1 - r), 1))] else: return [(z, r, i) for z in range(self.num_axial) for r in range(self.num_rings) for i in range(max(6*(self.num_rings - 1 - r), 1))] @property def _natural_indices(self): """Iterate over all possible (x,alpha) or (x,alpha,z) lattice element indices. This property is used when constructing distributed cell and material paths. Most importantly, the iteration order matches that used on the Fortran side. """ r = self.num_rings if self.num_axial is None: for a in range(-r + 1, r): for x in range(-r + 1, r): idx = (x, a) if self.is_valid_index(idx): yield idx else: for z in range(self.num_axial): for a in range(-r + 1, r): for x in range(-r + 1, r): idx = (x, a, z) if self.is_valid_index(idx): yield idx @property def ndim(self): return 2 if isinstance(self.universes[0][0], openmc.UniverseBase) else 3 @Lattice.pitch.setter def pitch(self, pitch): cv.check_type('lattice pitch', pitch, Iterable, Real) cv.check_length('lattice pitch', pitch, 1, 2) for dim in pitch: cv.check_greater_than('lattice pitch', dim, 0) self._pitch = pitch @Lattice.universes.setter def universes(self, universes): cv.check_iterable_type('lattice universes', universes, openmc.UniverseBase, min_depth=2, max_depth=3) self._universes = universes # NOTE: This routine assumes that the user creates a "ragged" list of # lists, where each sub-list corresponds to one ring of Universes. # The sub-lists are ordered from outermost ring to innermost ring. # The Universes within each sub-list are ordered from the "top" in a # clockwise fashion. # Set the number of axial positions. if self.ndim == 3: self._num_axial = len(self._universes) else: self._num_axial = None # Set the number of rings and make sure this number is consistent for # all axial positions. if self.ndim == 3: self._num_rings = len(self._universes[0]) for rings in self._universes: if len(rings) != self._num_rings: msg = 'HexLattice ID={0:d} has an inconsistent number of ' \ 'rings per axial position'.format(self._id) raise ValueError(msg) else: self._num_rings = len(self._universes) # Make sure there are the correct number of elements in each ring. if self.ndim == 3: for axial_slice in self._universes: # Check the center ring. if len(axial_slice[-1]) != 1: msg = 'HexLattice ID={0:d} has the wrong number of ' \ 'elements in the innermost ring. Only 1 element is ' \ 'allowed in the innermost ring.'.format(self._id) raise ValueError(msg) # Check the outer rings. for r in range(self._num_rings-1): if len(axial_slice[r]) != 6*(self._num_rings - 1 - r): msg = 'HexLattice ID={0:d} has the wrong number of ' \ 'elements in ring number {1:d} (counting from the '\ 'outermost ring). This ring should have {2:d} ' \ 'elements.'.format(self._id, r, 6*(self._num_rings - 1 - r)) raise ValueError(msg) else: axial_slice = self._universes # Check the center ring. if len(axial_slice[-1]) != 1: msg = 'HexLattice ID={0:d} has the wrong number of ' \ 'elements in the innermost ring. Only 1 element is ' \ 'allowed in the innermost ring.'.format(self._id) raise ValueError(msg) # Check the outer rings. for r in range(self._num_rings-1): if len(axial_slice[r]) != 6*(self._num_rings - 1 - r): msg = 'HexLattice ID={0:d} has the wrong number of ' \ 'elements in ring number {1:d} (counting from the '\ 'outermost ring). This ring should have {2:d} ' \ 'elements.'.format(self._id, r, 6*(self._num_rings - 1 - r)) raise ValueError(msg)
[docs] def find_element(self, point): r"""Determine index of lattice element and local coordinates for a point Parameters ---------- point : Iterable of float Cartesian coordinates of point Returns ------- 3-tuple of int Indices of corresponding lattice element in :math:`(x,\alpha,z)` or :math:`(\alpha,y,z)` bases numpy.ndarray Carestian coordinates of the point in the corresponding lattice element coordinate system """ # Convert coordinates to skewed bases x = point[0] - self.center[0] y = point[1] - self.center[1] if self._num_axial is None: iz = 1 else: z = point[2] - self.center[2] iz = floor(z/self.pitch[1] + 0.5*self.num_axial) if self._orientation == 'x': alpha = y - x*sqrt(3.) i1 = floor(-alpha/(sqrt(3.0) * self.pitch[0])) i2 = floor(y/(sqrt(0.75) * self.pitch[0])) else: alpha = y - x/sqrt(3.) i1 = floor(x/(sqrt(0.75) * self.pitch[0])) i2 = floor(alpha/self.pitch[0]) # Check four lattice elements to see which one is closest based on local # coordinates indices = [(i1, i2, iz), (i1 + 1, i2, iz), (i1, i2 + 1, iz), (i1 + 1, i2 + 1, iz)] d_min = np.inf for idx in indices: p = self.get_local_coordinates(point, idx) d = p[0]**2 + p[1]**2 if d < d_min: d_min = d idx_min = idx p_min = p return idx_min, p_min
[docs] def get_local_coordinates(self, point, idx): r"""Determine local coordinates of a point within a lattice element Parameters ---------- point : Iterable of float Cartesian coordinates of point idx : Iterable of int Indices of lattice element in :math:`(x,\alpha,z)` or :math:`(\alpha,y,z)` bases Returns ------- 3-tuple of float Cartesian coordinates of point in the lattice element coordinate system """ if self._orientation == 'x': x = point[0] - (self.center[0] + (idx[0] + 0.5*idx[1])*self.pitch[0]) y = point[1] - (self.center[1] + sqrt(0.75)*self.pitch[0]*idx[1]) else: x = point[0] - (self.center[0] + sqrt(0.75)*self.pitch[0]*idx[0]) y = point[1] - (self.center[1] + (0.5*idx[0] + idx[1])*self.pitch[0]) if self._num_axial is None: z = point[2] else: z = point[2] - (self.center[2] + (idx[2] + 0.5 - 0.5*self.num_axial) * self.pitch[1]) return (x, y, z)
[docs] def get_universe_index(self, idx): r"""Return index in the universes array corresponding to a lattice element index Parameters ---------- idx : Iterable of int Lattice element indices in the :math:`(x,\alpha,z)` coordinate system in 'y' orientation case, or indices in the :math:`(\alpha,y,z)` coordinate system in 'x' one Returns ------- 2- or 3-tuple of int Indices used when setting the :attr:`HexLattice.universes` property """ # First we determine which ring the index corresponds to. x = idx[0] a = idx[1] z = -a - x g = max(abs(x), abs(a), abs(z)) # Next we use a clever method to figure out where along the ring we are. i_ring = self._num_rings - 1 - g if x >= 0: if a >= 0: i_within = x else: i_within = 2*g + z else: if a <= 0: i_within = 3*g - x else: i_within = 5*g - z if self._orientation == 'x' and g > 0: i_within = (i_within + 5*g) % (6*g) if self.num_axial is None: return (i_ring, i_within) else: return (idx[2], i_ring, i_within)
[docs] def is_valid_index(self, idx): r"""Determine whether lattice element index is within defined range Parameters ---------- idx : Iterable of int Lattice element indices in the both :math:`(x,\alpha,z)` and :math:`(\alpha,y,z)` coordinate system Returns ------- bool Whether index is valid """ x = idx[0] y = idx[1] z = 0 - y - x g = max(abs(x), abs(y), abs(z)) if self.num_axial is None: return g < self.num_rings else: return g < self.num_rings and 0 <= idx[2] < self.num_axial
def create_xml_subelement(self, xml_element, memo=None): # If this subelement has already been written, return if memo is None: memo = set() elif self in memo: return memo.add(self) lattice_subelement = ET.Element("hex_lattice") lattice_subelement.set("id", str(self._id)) if len(self._name) > 0: lattice_subelement.set("name", str(self._name)) # Export the Lattice cell pitch pitch = ET.SubElement(lattice_subelement, "pitch") pitch.text = ' '.join(map(str, self._pitch)) # Export the Lattice outer Universe (if specified) if self._outer is not None: outer = ET.SubElement(lattice_subelement, "outer") outer.text = str(self._outer._id) self._outer.create_xml_subelement(xml_element, memo) lattice_subelement.set("n_rings", str(self._num_rings)) # If orientation is "x" export it to XML if self._orientation == 'x': lattice_subelement.set("orientation", "x") if self._num_axial is not None: lattice_subelement.set("n_axial", str(self._num_axial)) # Export Lattice cell center center = ET.SubElement(lattice_subelement, "center") center.text = ' '.join(map(str, self._center)) # Export the Lattice nested Universe IDs. if self.universes is None: raise ValueError(f"Lattice {self.id} does not have universes assigned.") # 3D Lattices if self._num_axial is not None: slices = [] for z in range(self._num_axial): # Initialize the center universe. universe = self._universes[z][-1][0] universe.create_xml_subelement(xml_element, memo) # Initialize the remaining universes. for r in range(self._num_rings-1): for theta in range(6*(self._num_rings - 1 - r)): universe = self._universes[z][r][theta] universe.create_xml_subelement(xml_element, memo) # Get a string representation of the universe IDs. slices.append(self._repr_axial_slice(self._universes[z])) # Collapse the list of axial slices into a single string. universe_ids = '\n'.join(slices) # 2D Lattices else: # Initialize the center universe. universe = self._universes[-1][0] universe.create_xml_subelement(xml_element, memo) # Initialize the remaining universes. for r in range(self._num_rings - 1): for theta in range(6*(self._num_rings - 1 - r)): universe = self._universes[r][theta] universe.create_xml_subelement(xml_element, memo) # Get a string representation of the universe IDs. universe_ids = self._repr_axial_slice(self._universes) universes = ET.SubElement(lattice_subelement, "universes") universes.text = '\n' + universe_ids # Append the XML subelement for this Lattice to the XML element xml_element.append(lattice_subelement)
[docs] @classmethod def from_xml_element(cls, elem, get_universe): """Generate hexagonal lattice from XML element Parameters ---------- elem : lxml.etree._Element `<hex_lattice>` element get_universe : function Function returning universe (defined in :meth:`openmc.Geometry.from_xml`) Returns ------- HexLattice Hexagonal lattice """ lat_id = int(get_text(elem, 'id')) name = get_text(elem, 'name') lat = cls(lat_id, name) lat.center = [float(i) for i in get_text(elem, 'center').split()] lat.pitch = [float(i) for i in get_text(elem, 'pitch').split()] lat.orientation = get_text(elem, 'orientation', 'y') outer = get_text(elem, 'outer') if outer is not None: lat.outer = get_universe(int(outer)) # Get nested lists of universes lat._num_rings = n_rings = int(get_text(elem, 'n_rings')) lat._num_axial = n_axial = int(get_text(elem, 'n_axial', 1)) # Create empty nested lists for one axial level univs = [[None for _ in range(max(6*(n_rings - 1 - r), 1))] for r in range(n_rings)] if n_axial > 1: univs = [deepcopy(univs) for i in range(n_axial)] # Get flat array of universes uarray = np.array([get_universe(int(i)) for i in get_text(elem, 'universes').split()]) # Fill nested lists j = 0 for z in range(n_axial): # Get list for a single axial level axial_level = univs[z] if n_axial > 1 else univs if lat.orientation == 'y': # Start iterating from top x, alpha = 0, n_rings - 1 while True: # Set entry in list based on (x,alpha,z) coordinates _, i_ring, i_within = lat.get_universe_index((x, alpha, z)) axial_level[i_ring][i_within] = uarray[j] # Move to the right x += 2 alpha -= 1 if not lat.is_valid_index((x, alpha, z)): # Move down in y direction alpha += x - 1 x = 1 - x if not lat.is_valid_index((x, alpha, z)): # Move to the right x += 2 alpha -= 1 if not lat.is_valid_index((x, alpha, z)): # Reached the bottom j += 1 break j += 1 else: # Start iterating from top alpha, y = 1 - n_rings, n_rings - 1 while True: # Set entry in list based on (alpha,y,z) coordinates _, i_ring, i_within = lat.get_universe_index((alpha, y, z)) axial_level[i_ring][i_within] = uarray[j] # Move to the right alpha += 1 if not lat.is_valid_index((alpha, y, z)): # Move down to next row alpha = 1 - n_rings y -= 1 # Check if we've reached the bottom if y == -n_rings: j += 1 break while not lat.is_valid_index((alpha, y, z)): # Move to the right alpha += 1 j += 1 lat.universes = univs return lat
def _repr_axial_slice(self, universes): """Return string representation for the given 2D group of universes. The 'universes' argument should be a list of lists of universes where each sub-list represents a single ring. The first list should be the outer ring. """ if self._orientation == 'x': return self._repr_axial_slice_x(universes) else: return self._repr_axial_slice_y(universes) def _repr_axial_slice_x(self, universes): """Return string representation for the given 2D group of universes in 'x' orientation case. The 'universes' argument should be a list of lists of universes where each sub-list represents a single ring. The first list should be the outer ring. """ # Find the largest universe ID and count the number of digits so we can # properly pad the output string later. largest_id = max([max([univ._id for univ in ring]) for ring in universes]) n_digits = len(str(largest_id)) pad = ' '*n_digits id_form = '{: ^' + str(n_digits) + 'd}' # Initialize the list for each row. rows = [[] for i in range(2*self._num_rings - 1)] middle = self._num_rings - 1 # Start with the degenerate first ring. universe = universes[-1][0] rows[middle] = [id_form.format(universe._id)] # Add universes one ring at a time. for r in range(1, self._num_rings): # r_prime increments down while r increments up. r_prime = self._num_rings - 1 - r theta = 0 y = middle # Climb down the bottom-right for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].append(id_form.format(universe._id)) # Translate the indices. y += 1 theta += 1 # Climb left across the bottom for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].insert(0, id_form.format(universe._id)) # Translate the indices. theta += 1 # Climb up the bottom-left for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].insert(0, id_form.format(universe._id)) # Translate the indices. y -= 1 theta += 1 # Climb up the top-left for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].insert(0, id_form.format(universe._id)) # Translate the indices. y -= 1 theta += 1 # Climb right across the top for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].append(id_form.format(universe._id)) # Translate the indices. theta += 1 # Climb down the top-right for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].append(id_form.format(universe._id)) # Translate the indices. y += 1 theta += 1 # Flip the rows and join each row into a single string. rows = [pad.join(x) for x in rows] # Pad the beginning of the rows so they line up properly. for y in range(self._num_rings - 1): rows[y] = (self._num_rings - 1 - y)*pad + rows[y] rows[-1 - y] = (self._num_rings - 1 - y)*pad + rows[-1 - y] # Join the rows together and return the string. universe_ids = '\n'.join(rows) return universe_ids def _repr_axial_slice_y(self, universes): """Return string representation for the given 2D group of universes in 'y' orientation case.. The 'universes' argument should be a list of lists of universes where each sub-list represents a single ring. The first list should be the outer ring. """ # Find the largest universe ID and count the number of digits so we can # properly pad the output string later. largest_id = max([max([univ._id for univ in ring]) for ring in universes]) n_digits = len(str(largest_id)) pad = ' '*n_digits id_form = '{: ^' + str(n_digits) + 'd}' # Initialize the list for each row. rows = [[] for i in range(1 + 4 * (self._num_rings-1))] middle = 2 * (self._num_rings - 1) # Start with the degenerate first ring. universe = universes[-1][0] rows[middle] = [id_form.format(universe._id)] # Add universes one ring at a time. for r in range(1, self._num_rings): # r_prime increments down while r increments up. r_prime = self._num_rings - 1 - r theta = 0 y = middle + 2*r # Climb down the top-right. for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].append(id_form.format(universe._id)) # Translate the indices. y -= 1 theta += 1 # Climb down the right. for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].append(id_form.format(universe._id)) # Translate the indices. y -= 2 theta += 1 # Climb down the bottom-right. for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].append(id_form.format(universe._id)) # Translate the indices. y -= 1 theta += 1 # Climb up the bottom-left. for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].insert(0, id_form.format(universe._id)) # Translate the indices. y += 1 theta += 1 # Climb up the left. for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].insert(0, id_form.format(universe._id)) # Translate the indices. y += 2 theta += 1 # Climb up the top-left. for i in range(r): # Add the universe. universe = universes[r_prime][theta] rows[y].insert(0, id_form.format(universe._id)) # Translate the indices. y += 1 theta += 1 # Flip the rows and join each row into a single string. rows = [pad.join(x) for x in rows[::-1]] # Pad the beginning of the rows so they line up properly. for y in range(self._num_rings - 1): rows[y] = (self._num_rings - 1 - y)*pad + rows[y] rows[-1 - y] = (self._num_rings - 1 - y)*pad + rows[-1 - y] for y in range(self._num_rings % 2, self._num_rings, 2): rows[middle + y] = pad + rows[middle + y] if y != 0: rows[middle - y] = pad + rows[middle - y] # Join the rows together and return the string. universe_ids = '\n'.join(rows) return universe_ids @staticmethod def _show_indices_y(num_rings): """Return a diagram of the hexagonal lattice layout with indices. This method can be used to show the proper indices to be used when setting the :attr:`HexLattice.universes` property. For example, running this method with num_rings=3 will return the following diagram:: (0, 0) (0,11) (0, 1) (0,10) (1, 0) (0, 2) (1, 5) (1, 1) (0, 9) (2, 0) (0, 3) (1, 4) (1, 2) (0, 8) (1, 3) (0, 4) (0, 7) (0, 5) (0, 6) Parameters ---------- num_rings : int Number of rings in the hexagonal lattice Returns ------- str Diagram of the hexagonal lattice showing indices """ # Find the largest string and count the number of digits so we can # properly pad the output string later largest_index = 6*(num_rings - 1) n_digits_index = len(str(largest_index)) n_digits_ring = len(str(num_rings - 1)) str_form = f'({{:{n_digits_ring}}},{{:{n_digits_index}}})' pad = ' '*(n_digits_index + n_digits_ring + 3) # Initialize the list for each row. rows = [[] for i in range(1 + 4 * (num_rings-1))] middle = 2 * (num_rings - 1) # Start with the degenerate first ring. rows[middle] = [str_form.format(num_rings - 1, 0)] # Add universes one ring at a time. for r in range(1, num_rings): # r_prime increments down while r increments up. r_prime = num_rings - 1 - r theta = 0 y = middle + 2*r for i in range(r): # Climb down the top-right. rows[y].append(str_form.format(r_prime, theta)) y -= 1 theta += 1 for i in range(r): # Climb down the right. rows[y].append(str_form.format(r_prime, theta)) y -= 2 theta += 1 for i in range(r): # Climb down the bottom-right. rows[y].append(str_form.format(r_prime, theta)) y -= 1 theta += 1 for i in range(r): # Climb up the bottom-left. rows[y].insert(0, str_form.format(r_prime, theta)) y += 1 theta += 1 for i in range(r): # Climb up the left. rows[y].insert(0, str_form.format(r_prime, theta)) y += 2 theta += 1 for i in range(r): # Climb up the top-left. rows[y].insert(0, str_form.format(r_prime, theta)) y += 1 theta += 1 # Flip the rows and join each row into a single string. rows = [pad.join(x) for x in rows[::-1]] # Pad the beginning of the rows so they line up properly. for y in range(num_rings - 1): rows[y] = (num_rings - 1 - y)*pad + rows[y] rows[-1 - y] = (num_rings - 1 - y)*pad + rows[-1 - y] for y in range(num_rings % 2, num_rings, 2): rows[middle + y] = pad + rows[middle + y] if y != 0: rows[middle - y] = pad + rows[middle - y] # Join the rows together and return the string. return '\n'.join(rows) @staticmethod def _show_indices_x(num_rings): """Return a diagram of the hexagonal lattice with x orientation layout with indices. This method can be used to show the proper indices to be used when setting the :attr:`HexLattice.universes` property. For example,running this method with num_rings=3 will return the similar diagram:: (0, 8) (0, 9) (0,10) (0, 7) (1, 4) (1, 5) (0,11) (0, 6) (1, 3) (2, 0) (1, 0) (0, 0) (0, 5) (1, 2) (1, 1) (0, 1) (0, 4) (0, 3) (0, 2) Parameters ---------- num_rings : int Number of rings in the hexagonal lattice Returns ------- str Diagram of the hexagonal lattice showing indices in OX orientation """ # Find the largest string and count the number of digits so we can # properly pad the output string later largest_index = 6*(num_rings - 1) n_digits_index = len(str(largest_index)) n_digits_ring = len(str(num_rings - 1)) str_form = f'({{:{n_digits_ring}}},{{:{n_digits_index}}})' pad = ' '*(n_digits_index + n_digits_ring + 3) # Initialize the list for each row. rows = [[] for i in range(2*num_rings - 1)] middle = num_rings - 1 # Start with the degenerate first ring. rows[middle] = [str_form.format(num_rings - 1, 0)] # Add universes one ring at a time. for r in range(1, num_rings): # r_prime increments down while r increments up. r_prime = num_rings - 1 - r theta = 0 y = middle for i in range(r): # Climb down the bottom-right rows[y].append(str_form.format(r_prime, theta)) y += 1 theta += 1 for i in range(r): # Climb left across the bottom rows[y].insert(0, str_form.format(r_prime, theta)) theta += 1 for i in range(r): # Climb up the bottom-left rows[y].insert(0, str_form.format(r_prime, theta)) y -= 1 theta += 1 for i in range(r): # Climb up the top-left rows[y].insert(0, str_form.format(r_prime, theta)) y -= 1 theta += 1 for i in range(r): # Climb right across the top rows[y].append(str_form.format(r_prime, theta)) theta += 1 for i in range(r): # Climb down the top-right rows[y].append(str_form.format(r_prime, theta)) y += 1 theta += 1 # Flip the rows and join each row into a single string. rows = [pad.join(x) for x in rows] # Pad the beginning of the rows so they line up properly. for y in range(num_rings - 1): rows[y] = (num_rings - 1 - y)*pad + rows[y] rows[-1 - y] = (num_rings - 1 - y)*pad + rows[-1 - y] # Join the rows together and return the string. return '\n\n'.join(rows)
[docs] @staticmethod def show_indices(num_rings, orientation="y"): """Return a diagram of the hexagonal lattice layout with indices. Parameters ---------- num_rings : int Number of rings in the hexagonal lattice orientation : {"x", "y"} Orientation of the hexagonal lattice Returns ------- str Diagram of the hexagonal lattice showing indices """ if orientation == 'x': return HexLattice._show_indices_x(num_rings) else: return HexLattice._show_indices_y(num_rings)
[docs] @classmethod def from_hdf5(cls, group, universes): """Create rectangular lattice from HDF5 group Parameters ---------- group : h5py.Group Group in HDF5 file universes : dict Dictionary mapping universe IDs to instances of :class:`openmc.UniverseBase`. Returns ------- openmc.HexLattice Hexagonal lattice """ n_rings = group['n_rings'][()] n_axial = group['n_axial'][()] center = group['center'][()] pitch = group['pitch'][()] outer = group['outer'][()] if 'orientation' in group: orientation = group['orientation'][()].decode() else: orientation = "y" universe_ids = group['universes'][()] # Create the Lattice lattice_id = int(group.name.split('/')[-1].lstrip('lattice ')) name = group['name'][()].decode() if 'name' in group else '' lattice = openmc.HexLattice(lattice_id, name) lattice.center = center lattice.pitch = pitch lattice.orientation = orientation # If the Universe specified outer the Lattice is not void if outer >= 0: lattice.outer = universes[outer] if orientation == "y": # Build array of Universe pointers for the Lattice. Note that # we need to convert between the HDF5's square array of # (x, alpha, z) to the Python API's format of a ragged nested # list of (z, ring, theta). uarray = [] for z in range(n_axial): # Add a list for this axial level. uarray.append([]) x = n_rings - 1 a = 2*n_rings - 2 for r in range(n_rings - 1, 0, -1): # Add a list for this ring. uarray[-1].append([]) # Climb down the top-right. for i in range(r): uarray[-1][-1].append(universe_ids[z, a, x]) x += 1 a -= 1 # Climb down the right. for i in range(r): uarray[-1][-1].append(universe_ids[z, a, x]) a -= 1 # Climb down the bottom-right. for i in range(r): uarray[-1][-1].append(universe_ids[z, a, x]) x -= 1 # Climb up the bottom-left. for i in range(r): uarray[-1][-1].append(universe_ids[z, a, x]) x -= 1 a += 1 # Climb up the left. for i in range(r): uarray[-1][-1].append(universe_ids[z, a, x]) a += 1 # Climb up the top-left. for i in range(r): uarray[-1][-1].append(universe_ids[z, a, x]) x += 1 # Move down to the next ring. a -= 1 # Convert the ids into Universe objects. uarray[-1][-1] = [universes[u_id] for u_id in uarray[-1][-1]] # Handle the degenerate center ring separately. u_id = universe_ids[z, a, x] uarray[-1].append([universes[u_id]]) else: # Build array of Universe pointers for the Lattice. Note that # we need to convert between the HDF5's square array of # (alpha, y, z) to the Python API's format of a ragged nested # list of (z, ring, theta). uarray = [] for z in range(n_axial): # Add a list for this axial level. uarray.append([]) a = 2*n_rings - 2 y = n_rings - 1 for r in range(n_rings - 1, 0, -1): # Add a list for this ring. uarray[-1].append([]) # Climb down the bottom-right. for i in range(r): uarray[-1][-1].append(universe_ids[z, y, a]) y -= 1 # Climb across the bottom. for i in range(r): uarray[-1][-1].append(universe_ids[z, y, a]) a -= 1 # Climb up the bottom-left. for i in range(r): uarray[-1][-1].append(universe_ids[z, y, a]) a -= 1 y += 1 # Climb up the top-left. for i in range(r): uarray[-1][-1].append(universe_ids[z, y, a]) y += 1 # Climb across the top. for i in range(r): uarray[-1][-1].append(universe_ids[z, y, a]) a += 1 # Climb down the top-right. for i in range(r): uarray[-1][-1].append(universe_ids[z, y, a]) a += 1 y -= 1 # Move down to the next ring. a -= 1 # Convert the ids into Universe objects. uarray[-1][-1] = [universes[u_id] for u_id in uarray[-1][-1]] # Handle the degenerate center ring separately. u_id = universe_ids[z, y, a] uarray[-1].append([universes[u_id]]) # Add the universes to the lattice. if len(pitch) == 2: # Lattice is 3D lattice.universes = uarray else: # Lattice is 2D; extract the only axial level lattice.universes = uarray[0] return lattice