Theory and Methodology¶
- 1. Introduction
- 2. Geometry
- 2.1. Constructive Solid Geometry
- 2.2. Computing the Distance to Nearest Boundary
- 2.3. Finding a Cell Given a Point
- 2.4. Finding a Lattice Tile
- 2.5. Determining if a Coordinate is in a Cell
- 2.6. Handling Surface Crossings
- 2.7. Building Neighbor Lists
- 2.8. Reflective Boundary Conditions
- 2.9. White Boundary Conditions
- 3. Cross Section Representations
- 4. Random Number Generation
- 5. Neutron Physics
- 5.1. Sampling Distance to Next Collision
- 5.2. \((n,\gamma)\) and Other Disappearance Reactions
- 5.3. Elastic Scattering
- 5.4. Inelastic Scattering
- 5.5. \((n,xn)\) Reactions
- 5.6. Multi-Group Scattering
- 5.7. Fission
- 5.8. Secondary Angle-Energy Distributions
- 5.9. Transforming a Particle’s Coordinates
- 5.10. Effect of Thermal Motion on Cross Sections
- 5.11. S(\(\alpha,\beta,T\)) Tables
- 5.12. Unresolved Resonance Region Probability Tables
- 5.13. Variance Reduction Techniques
- 6. Photon Physics
- 7. Tallies
- 8. Eigenvalue Calculations
- 9. Depletion
- 10. Heating and Energy Deposition
- 11. Parallelization
- 12. Nonlinear Diffusion Acceleration - Coarse Mesh Finite Difference
- 13. Variance Reduction
- 14. Random Ray
- 14.1. What is Random Ray?
- 14.2. Why is a Random Ray Solver Included in OpenMC?
- 14.3. Random Ray Numerical Derivation
- 14.4. Simplified Algorithm
- 14.5. How are Tallies Handled?
- 14.6. Linear Sources
- 14.7. Shannon Entropy in Random Ray
- 14.8. Fixed Source
- 14.9. Adjoint Flux Solver Mode
- 14.10. Fundamental Sources of Bias